Applications of point process modelsto imaging and biology
Başlık çevirisi mevcut değil.
- Tez No: 716746
- Danışmanlar: PROF. SATİSH IYENGAR
- Tez Türü: Doktora
- Konular: İstatistik, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: University of Pittsburgh
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 117
Özet
Özet yok.
Özet (Çeviri)
This dissertation deals with point process models and their applications to imaging and messenger RNA (mRNA) transcription. We address three problems. The first problem arises in two-photon laser scanning microscopy. We model the process by which photons are counted by a detector which suffers from a dead period upon registration of a photon. In this model, we assume that there are a Poisson (α) number of excited molecules, with exponentially distributed waiting times for the emissions of photons. We derive the exact distribution of all observed counts, rather than grouped counts which were used earlier. We use it to get improved estimates of the Poisson intensity, which leads to images with higher signal-to-noise ratio. This improvement is because grouping of count data results in loss of information. We illustrate this improvement on imaging data of paper fibers. Next, we study two variants of this model: the first uses a finite time horizon and the second considers gamma waiting times for the emissions. The second problem concerns the Conway-Maxwell-Poisson distribution for count data. This family has been proposed as a generalization of the Poisson for handling overdispersion and underdisperson. Because the normalizing constant of this family is hard to compute, good approximations for it are needed. We provide a statistical approach to derive an existing approximation more simply. However, this approximation does not perform well across all the parameter ranges. Therefore, we introduce correction terms to improve its performance. For other parts of the parameter space, we use the geometric and Bernoulli distributions, with correction terms based on Taylor expansions. Using numerical examples, we show that iv our approximations are much better than earlier proposed methods. In the last problem, we present a new application for Conway-Maxwell-Poisson family. We use the generalized linear model setting of this family to study mRNA counts. We then compare its performance with the existing methods used for modeling mRNAs, such as the negative binomial. This empirical model can be a good modeling tool for dispersed mRNA count data when a biophysically based model is not available.
Benzer Tezler
- İmalat sistemlerinin tasarlanması ve öncelik kurallarının belirlenmesinde yapay sinir ağlarının kullanılması
Başlık çevirisi yok
TARIK ÇAKAR
Doktora
Türkçe
1997
Mühendislik Bilimleriİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
PROF. DR. AYHAN TORAMAN
- Mekânsal dijital ikizlere yönelik yapı modeli üretiminde prosedürel modelleme yönteminin tasarımı ve geliştirilmesi
Design and development of procedural modeling method in generating structure models for spatial digital twins
GÜÇLÜ ŞENYURDUSEV
Doktora
Türkçe
2024
Bilim ve Teknolojiİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
DOÇ. DR. AHMET ÖZGÜR DOĞRU
- Classification of chest X-rays by divergence-based convolutional neural network
Diverjans temelli evrişimsel ağ ile akciğer röntgen görüntülerinin sınıflandırılması
MUHAMMED NUR TALHA KILIÇ
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. TAMER ÖLMEZ
- Dijital tasarım araçları ile yeniden yorumlanan ve üretilen froebel blokları üzerinden 4-6 yaş çocukların mekan-hackleme süreçlerinin değerlendirilmesi
Evaluation of space-hacking process of 4-6 year old children through froebel blocks reinterpreted and produced with digital design tools
NİLHAN KAYA
Yüksek Lisans
Türkçe
2023
Eğitim ve Öğretimİstanbul Teknik Üniversitesiİç Mimari Tasarım Ana Bilim Dalı
DOÇ. DR. ETHEM GÜRER