Geri Dön

Makine öğrenmesi yöntemleri ile faizsiz finansman sektöründe müşteri kayıp tahmini: Churn analizi

Customer loss forecast in the interest free finance sectorwith machine learning methods: Churn analysis

  1. Tez No: 684087
  2. Yazar: AYŞEGÜL KABA
  3. Danışmanlar: PROF. DR. BARIŞ AŞIKGİL
  4. Tez Türü: Yüksek Lisans
  5. Konular: İstatistik, Statistics
  6. Anahtar Kelimeler: Müşteri kayıp analizi, makine öğrenimi, sınıflandırma, faizsiz finans sektörü, Customer loss Analysis, Machine Learning, Classification, interest-free finance sector
  7. Yıl: 2021
  8. Dil: Türkçe
  9. Üniversite: Mimar Sinan Güzel Sanatlar Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İstatistik Ana Bilim Dalı
  12. Bilim Dalı: İstatistik Bilim Dalı
  13. Sayfa Sayısı: 62

Özet

Avrupa'nın birçok ülkesinde uygulamada olan faizsiz finans sisteminin tercih edilmesinde, ihtiyaçların hızlı ve kolay karşılanabilmesi en önemli sebepler arasındadır. Gayrimenkul, taşıt ve iş yeri satışını kolaylaştırmak için oluşturulan faizsiz finans sistemi dünyada olduğu gibi Türkiye'de de giderek yaygınlaşmaktadır ve rekabet her gün artmaktadır. Günümüz iş dünyasında faizsiz finans sistemine öncülük yapan ve sektörde kendine yer edinmeye çalışan firmaların sürekliliği sağlayabilmesi için sistemden ayrılacak müşterilerin tahmini (Churn Analizi) oldukça önemlidir. Makine öğrenme uygulamaları da bu konuda aktif bir şekilde kullanılmaktadır. Sektörün hızlı bir gelişme sürecinde olması ve firmalar arası rekabetin büyüklüğü nedeniyle ayrılacak müşterilerin analiz ve tahmini faizsiz finans sektöründe yoğun bir şekilde yapılmaktadır. Bu çalışmanın amacı, faizsiz finans sisteminde yaşanılan kayıpları incelemek ve en iyi kayıp tahminini veren modeli oluşturmaktır. Çalışma, faizsiz finans sektöründeki öncü firmanın 2020 yılına ait verilerini içermektedir. Çalışmada kullanılan veri kümesi 18507 müşteriye ait olup, 14 etkin özellik içeren değişkenlerden oluşmaktadır. Makine öğrenmesi yöntemleri ile modeli kurmadan önce müşteri kaybına sebep olabileceği düşünülen değişkenler, keşifsel veri analizi ile incelenmiştir. Müşteri kaybına sebep olabileceği düşünülen veriler ve Churn değişkeni ile model oluşturulmadan önce veri kümesi %75-%25 oranında bölünerek Lojistik regresyon (LR), K en yakın komşu (KNN) ve Destek vektör kümeleri (SVM) ile en iyi performans veren model incelenmiştir.

Özet (Çeviri)

One of the most important reasons for the preference of interest-free financial systems, which are in practice in many European countries, is that the needs can be met quickly and easily. The interest-free finance system, which was created to facilitate the sale of real estate, vehicles and workplaces, is becoming increasingly widespread in Turkey as well as in the world, and competition is increasing day by day. In order for companies that are leading interest-free financial systems in today's business world and trying to gain a place in the sector to ensure continuity, the forecast of customers who will leave the system (churn analysis) is very important. Machine learning applications are also actively used in this regard. Due to the fact that the sector is in a rapid development process and the size of competition between companies, the analysis and prediction of customers who will leave is carried out intensively in the interest-free financial sector. The aim of this study is to examine the losses experienced in the interest-free finance system and to create the model that gives the best loss estimation. The study includes the data of the leading company in the interest-free finance sector for 2020. The dataset used in the study belongs to 18507 customers and consists of variables containing 14 active features. Before building the model with machine learning methods, the variables that are thought to cause loss of customers were examined with exploratory data analysis. Before creating the model with the data that is thought to cause customer loss and the Churn variable, the data set was divided by 75%-25% and the best performing model was examined with Logistic regression (LR), K nearest neighbor (KNN) and Support vector sets (SVM).

Benzer Tezler

  1. Makine öğrenmesi yöntemleri ile video görüntülerindeki fiziksel şiddetin tespit edilmesi

    Video based physical violation detection using machine learning methods

    MUHAMMET FATİH POLAT

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    İstatistikDokuz Eylül Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. AYLİN ALIN

  2. Makine öğrenmesi yöntemleri ile sahte felaket tweetlerinin tahmini

    Predicting fake disaster tweets with machine learning methods

    FATMA KURŞUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    İstatistikYıldız Teknik Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. FATMA NOYAN TEKELİ

  3. Makine öğrenmesi yöntemleri ile futbol oyuncularının performans analizi

    Football player performance analysis using machine learning techniques

    VEHBİ HAKAN SAYAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBurdur Mehmet Akif Ersoy Üniversitesi

    Yönetim Bilişim Sistemleri Ana Bilim Dalı

    DOÇ. DR. EMRAH HANÇER

  4. Makine öğrenmesi yöntemleri ile banka pazarlama tahmini

    Bank marketing prediction with machine learning methods

    EGEMEN TÜRKMEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Kültür Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖZGÜR KORAY ŞAHİNGÖZ

  5. Makine öğrenmesi yöntemleri ile demans tahmini

    Prediction of dementia by machine learning methods

    TUĞBA TUNA

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı

    PROF. DR. FETHİYE AYLİN SUNGUR

    PROF. DR. MUSTAFA ERSEL KAMAŞAK