Knowledge discovery for software engineering using sequential pattern mining
Yazılım mühendisliği için sıralı örüntü madenciliği ile bilgi keşfi
- Tez No: 704699
- Danışmanlar: DR. ÖĞR. ÜYESİ KÖKTEN ULAŞ BİRANT
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: İngilizce
- Üniversite: Dokuz Eylül Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 54
Özet
Kaynak kodlardaki sıralı örüntüleri keşfetmek yazılım mühendisliğinde önemli bir konudur, çünkü kod tamamlama, kodu yeniden düzenleme, geliştirici profili oluşturma, ve kod karmaşıklığı ölçümü gibi çeşitli işlemlerde yardımcı olacak yararlı bilgiler sağlayabilmektedir. Bu tez, bir yazılım projesinde sıkça geçen sıralı kuralları keşfeden ve Kaynak Kod Madencisi (SCodeMiner) adı verilen yeni bir yazılım çerçevesi önermektedir. Önerilen yazılım çerçevesi ilk olarak bir Java kaynak kodunu bir sıralı veri tabanına dönüştürür ve ardından bir sıralı örüntü madenciliği (SPM) algoritması uygular. Bu çalışma aynı zamanda, dört SPM algoritmasını çalışma süresi açısından karşılaştırması açısından da orijinaldir. Bu algoritmalar şunlardır: ön ek ile öngörülen sıralı örüntü madenciliği (PrefixSpan), denklik sınıflarını kullanarak sıralı örüntü keşfi (SPADE), çift yönlü uzatma (BIDE+), ve son pozisyon indüksiyonu (LAPIN). Açık kaynak kodlu bir yazılım projesi üzerinde gerçekleştirilen deneyler, önerilen SCodeMiner yazılım çerçevesinin kodlama örüntülerini belirlemede etkili bir madencilik aracı olduğunu göstermektedir.
Özet (Çeviri)
Discovering sequential patterns in source codes is an important issue in software engineering since it can provide useful knowledge to help in a variety of tasks such as code completion, code refactoring, developer profiling, and code complexity measurement. This paper proposes a new framework, called Source Code Miner (SCodeMiner), which discovers frequent sequential rules within a software project. The proposed framework firstly transforms a Java code into a sequence data and then applies a sequential pattern mining (SPM) algorithm. This study is also original in that it compares four SPM algorithms in terms of computational time, including sequential pattern discovery using equivalence classes (SPADE), prefix-projected sequential pattern mining (PrefixSpan), bi-directional extension (BIDE+), and last position induction (LAPIN). The experiments that carried out on an open-source software project showed that the proposed SCodeMiner framework is an effective mining tool in identifying coding patterns.
Benzer Tezler
- Yapay Zeka'nın robot görmesi üzerine uygulanması
An Application of robot vision in artificial intelligence
FUNDA PEHLİVAN
- Veri tabanından bilgi tabanına geçişte bulanık bir araç
A Fuzzy tod for extracting knowledge-base from database
CEM TUTAR
- Özellik seçimi, sınıflama ve öngörü uygulamalarına yönelik birliktelik kuralı çıkarımı ve yazılım geliştirilmesi
Association rule extraction for feature selection, classification and prediction applications and software development
MURAT KARABATAK
Doktora
Türkçe
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiElektrik ve Elektronik Mühendisliği Bölümü
YRD. DOÇ. DR. MELİH CEVDET İNCE
- Disaster rescue and management using wireless ad-hoc networks
Kablosuz ad-hoc ağları kullanılarak afet kurtarma ve yönetim
ABDULMOHSIN ALDGMAN
Yüksek Lisans
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiBilgi Teknolojileri Ana Bilim Dalı
DOÇ. YASA EKŞİOĞLU ÖZOK
- Biyokimyasal işaretlerin eğrilme yöntemleri kullanılarak hizalanması
Biochemical signal alignment using warping methods
AHMET ELBİR
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. FETHULLAH KARABİBER