Geri Dön

Electronic properties of artificial graphene nanostructure

Yapay grafen nanoyapılarının elektronik özellikleri

  1. Tez No: 705120
  2. Yazar: EMRE OKCU
  3. Danışmanlar: PROF. DR. ALEV DEVRİM GÜÇLÜ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Fizik ve Fizik Mühendisliği, Physics and Physics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Fizik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 55

Özet

Yapay grafen, yapay bal peteği simetrisiyle grafenin dikkat çeken özelliklerini taklit eder. Örneğin; Enerji dağılımında Dirac konileri, sıfır bant aralığı gibi. Çok yönlü üretim metodları yapay grafeni değerli malzeme yapmaktadır. Lazerler, moleküller ve yarı iletkenlerle üretilebilinir. Yarı iletken temelli yapay grafen çekici potansiyel ile bal peteği deseniyle nokta örgüyle ya da itici potansiyel ile üçgen deseniyle antinokta örgüyle üretilebilinir. Hesaplamalarda yarı iletken (GaAs) temelli yapay grafen kullanılarak elektronik özellikler hesaplandı. Grafendeki gibi yapay grafen de enerji dağılımlarında Dirac konilerine sahiptir. Grafenin karbon atomları arası mesafesi 1.42 angstromdur. Bu mesafe değiştirilemez fakat yapay grafen bize ayarlanabilirlik sağlamaktadır. Farklı parametreler fazlasıyla bant yapısı sağlamaktadır. Sadece Dirac konileri değil aynı zamanda boşluklu bant yapılarını da sağlamaktadır. Grafenimsi özellikler ve ayarlanabilirlik yapay grafeni önemli ve araştırmaya değer kılmaktadır. Bunun yanında başka ayarlanabilir parametre olan sertlik potansiyelin şeklini değiştirmek için ekledik. Sertlik hesaplarımızda önemli bir parametre oldu. Sertlik bant yapısı üzerinde dramatik değişimlere neden oldu. Öncelikle, tek-elektron yakınsamasıyla yapay grafenin bant yapıları hesaplandı. Bazı parametreler diğer çalışmalarla karşılaştırıldı ve aynı sonuçlar bulundu. Dirac konileri enerji dağılımda elde edildi. Hoplama ve Hubbard U parametreleri hesaplandı. Bu parametreler sonlu yapıları hesaplamak için önemlidir. Ortalama-alan Hubbard denklemi çözülüp dalga fonksiyonları deneme dalga fonksiyonu olarak kuantum Monte Carlo gibi metodlarda kullanilabilinir. İkinci adım, yoğunluk fonksiyon teorisi kullanarak elektron-elektron etkileşimleri hesaplandı. Yerel yoğunluk yakınsaması Kohn-Sham denklemini çözmek için seçildi. YFT'den elde edilen hoplama parametreleri tek-elektron yakınsamasına göre daha gerçekçidir. YFT'de sertlik enerji dağılımda önemli rol oynamaktadır. Farklı sertlik değerleri farklı bant yapılarına neden olmaktadır. Bu sertlik Dirac konileri ve eğimlerine etki etmektedir. Bu yüzden sertlik hoplama parametresini değiştiren bir parametredir.

Özet (Çeviri)

Artificial graphene is an artificial honeycomb structure which mimics the interesting properties of graphene. Such as Dirac cone in energy dispersion, zero band gap etc. Wide range of production type makes artificial graphene valuable material. It can be engineered by lasers, molecules and semiconductors. Semiconductor based artificial graphene can be produced by dot lattice with honeycomb patterned attractive potential or by antidot lattice with triangular patterned repulsive potential. In the following calculations, semiconductor (GaAs) based artificial graphene was used to compute electronic properties. Like in graphene, artificial graphene has Dirac cones in energy dispersion. However, graphene has 1.42 angstrom carbon to carbon atom distance. This distance can not be changed but artificial graphene offers us tunability. Different parameters yield tons of band structure. It offers not only Dirac cone but also gaped bands in energy dispersion. This graphene-like feature and tunability make artificial graphene an important and researchable subject. Besides, we added another tunable parameter stiffness to control the shape of potential. Stiffness became another important parameter in our calculations. We observed that stiffness dramatically changes the band structure of the material. As a first step, artificial graphene band structures are calculated from the single-electron approximation. Some parameters are compared with other works and the same results are found. Dirac cones are achieved in band structures. Hopping and Hubbard U values are computed. Those parameters are essential for computing finite structures. Mean-field Hubbard can be solved, and wave functions can be used as input for input required methods such as quantum Monte Carlo. As a second step, we used the density functional theory method to investigate electron-electron interactions. Local density approximation was chosen to solve the Kohn-Sham equation. Hopping parameters obtained from DFT are much realistic than the single-electron approximation. Stiffness plays a big role in DFT energy dispersion. Different stiffness values result in different band structures. Those stiffness values influence Dirac cones and their slope. So that stiffness changes the hopping parameter.

Benzer Tezler

  1. Vitamin A ve gümüş nanotanecik katkılı cilt maskesi üretimi

    Production of skin mask containing vitamin A and silver nanoparticles

    TUĞÇE KADAKAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Biyomühendislikİstanbul Teknik Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    PROF. DR. MELEK MÜMİNE EROL TAYGUN

  2. PLA/HA/GO nanokompozit doku iskelesinin elektroeğirme yöntemiyle üretimi ve karakterizasyonu

    Production and characterization of PLA/HA/GO nanocomposite scaffold by electrospinning

    BÜŞRA OKTAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    BiyomühendislikYıldız Teknik Üniversitesi

    Biyomühendislik Ana Bilim Dalı

    DOÇ. DR. CEM BÜLENT ÜSTÜNDAĞ

    DOÇ. DR. ESMA ÖZEROL

  3. Coating the laser surface modified titanium alloys by graphene and hydroxyapatite

    Yüzeyi laser ile modifiye edilmiş titanyum alaşımlarının grafen ve hidroksiapatit kaplanması

    ERTUĞRUL BÜLBÜL

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Mühendislik BilimleriYıldız Teknik Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    PROF. DR. BÜNYAMİN AKSAKAL

  4. Grafen oksit sentezinde modifiye hummers ve tour yöntemlerinin karşılaştırılması

    Comparison of modified hummers and tour methods in the synthesis of graphene oxide

    ÇAĞLA GİZEM ACAR ÜNAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Makine MühendisliğiMersin Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÖNDER ALBAYRAK

  5. Nanokompozit tabanlı esnek dokunsal sensörler

    Nanocomposite-based flexible tactile sensors

    YETER ŞEKERTEKİN

    Doktora

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. DİNÇER GÖKCEN