Knee joint pose estimation using deep neural network fortransfemoral prosthesis
Başlık çevirisi mevcut değil.
- Tez No: 711898
- Danışmanlar: PROF. DR. YUKİO TAKEDA
- Tez Türü: Yüksek Lisans
- Konular: Makine Mühendisliği, Mechanical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: Tokyo Institute of Technology
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 86
Özet
Özet yok.
Özet (Çeviri)
As the prosthetic technology progressed to robotics, a need for an online knee joint angle estimation algorithm for transfemoral prosthesis has risen. In order to estimate the knee joint angle, this thesis investigated the application of Long-Short Term Memory (LSTM) neural network that performs both as a high-level controller and low-level controller. Input is selected as the angular state of other residual joints which are namely, right hip joint, left hip joint and right knee joint. The angular state refers to a vector of data at any given state which includes angle, angular velocity, and angular acceleration of every residual joint in the lower limbs. Only the angular state on sagittal plane is used in this work. A dataset of 2899 gait recordings is expanded by means of digital signal processing. Moreover, stand-to-sit and sit-to-stand movements are procedurally generated. Six different deep LSTM neural networks are trained with a total of 105980 gait recordings and evaluated for varying gait speed, multiple movements, error rates and adaptability. Based on the results, a deep LSTM network can successfully respond to the intended movement. Moreover, the networks were able to successfully respond to varying walking speeds without any intervention. In addition, there is a strong correlation between angular state and the output knee joint angle that a neural network can extract. Based on the quantitative results, deeper networks should be preferred instead of wider networks in terms of accuracy and precision. The implemented network acted as both a high-level controller and a mid-level controller. The results suggest that deep LSTM networks is a desirable element in the control of active transfemoral prosthesis which provides a combined high and mid level controller.
Benzer Tezler
- Diz ve kalça eklem protezlerin değerlendirilmesi
Evaluation of the infections of knee and hip joint prosthesis: A clinical experiment
ABBAS TOKYAY
Tıpta Uzmanlık
Türkçe
2013
Ortopedi ve TravmatolojiDokuz Eylül ÜniversitesiOrtopedi ve Travmatoloji Ana Bilim Dalı
PROF. DR. VASFİ KARATOSUN
- Classification of knee osteoarthritis severity using deep learning with fully supervised and semi-supervised-based approaches
Derin öğrenme ile tamamen denetimli ve yarı-denetimli yaklaşım tabanlı diz osteoartrit şiddetinin sınıflandırılması
İLKNUR AKTEMUR
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. İLKAY ÖKSÜZ
- İnsan hareketi izleme teknolojilerinin karşılaştırmalı değerlendirmesi
Comparative assessment of human motion monitoring technologies
CEMAL FATİH KUYUCU
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÖKHAN İNCE
- 15-19 yaş bayan voleybol oyuncularında 8 haftalık antrenman programı boyunca uygulanan Kinesio® tape bantlamanın kuvvet ve esneklik performansına etkileri
The effects of 8 weeks of Kinesio taping during the training period in muscle strength and flexibilty in 15-19 year-old women volleyball players
İLKAY KOÇ
Yüksek Lisans
Türkçe
2011
SporGazi ÜniversitesiBeden Eğitimi ve Spor Ana Bilim Dalı
DOÇ. DR. NEVİN ATALAY GÜZEL
- Patellofemoral ağrı sendromlu hastalarda diz ekleminin propriosepsiyon duyusunun değerlendirilmesi
Knee joint proprioception assessment in patients with patellofemoral pain syndrome
BURCU KANER ADALMAZ
Tıpta Uzmanlık
Türkçe
2004
Fiziksel Tıp ve RehabilitasyonDokuz Eylül ÜniversitesiFiziksel Tıp ve Rehabilitasyon Ana Bilim Dalı
Y.DOÇ.DR. ÇİĞDEM BİRCAN