Geri Dön

Estimation, mapping and navigation with micro aerial vehicles for infrastructure inspection

Başlık çevirisi mevcut değil.

  1. Tez No: 717514
  2. Yazar: TOLGA ÖZASLAN
  3. Danışmanlar: DR. VİJAY KUMAR, DR. CAMİLO J. TAYLOR
  4. Tez Türü: Doktora
  5. Konular: Makine Mühendisliği, Mechanical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: University of Pennsylvania
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 212

Özet

Özet yok.

Özet (Çeviri)

Multi-rotor Micro Aerial Vehicles (MAV) have become popular robotic platforms in the last decade due to their manufacturability, agility and diverse payload options. Amongst the most promising applications areas of MAVs are inspection, air delivery, surveillance, search and rescue, real estate, entertainment and photography to name a few. While GPS offers an easy solution for outdoor autonomy, using onboard sensors is the only solution for autonomy in constrained indoor environments. In this work, we study onboard state estimation, mapping and navigation of a small MAV equipped with a minimal set of sensors inside GPS-denied, axisymmetric, tunnel-like environments such as penstocks. We primarily focus on state estimators formulated for different sensor suits which include 2D/3D lidars, cameras, and Inertial Measurement Units (IMU). Penstocks are pitch dark environments and offer very weak visual texture even with onboard illumination, hence our estimators primarily rely on lidars and IMU. The point cloud data returned by the lidar consists of either elliptical contours or indiscriminate partial cylindrical patches making localization along the tunnel axis theoretically impossible. Cameras track features on the walls using the onboard illumination to estimate the velocity along the tunnel axis unobservable to range sensors. Information from all sensors are then fused in a central Kalman Filter for 6 Degrees-of-Freedom (DOF) state estimation. These approaches are validated through onsite experiments conducted in four different dams demonstrating state estimation, environment mapping, autonomous and shared control.

Benzer Tezler

  1. Mikro hava araçlarının bilinmeyen ortamlarda görüntü temelli kontrolü

    Vision based control of micro air vehicles in unknown environments

    CİHAT BORA YİĞİT

    Yüksek Lisans

    Türkçe

    Türkçe

    2012

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ERDİNÇ ALTUĞ

  2. Kapalı ortamlarda yerelleştirme ve haritalama için sensör füzyonu

    Sensor fusion for gps denied environment for localization and mapping

    HÜSEYİN BURAK KURT

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Makine Ana Bilim Dalı

    DOÇ. DR. ERDİNÇ ALTUĞ

  3. Elde taşınabilir bir gömülü sistem üzerinde kapalı alan konum tahmin yöntemlerinin gerçeklenmesi ve karşılaştırılması

    Implementation and comparison of indoor location estimation methods on a handheld embedded system

    OZAN VAHİT ALTINPINAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MÜŞTAK ERHAN YALÇIN

  4. Otonom araçlar için 2B lazer tarayıcı kullanılarak yeni 3B LIDAR sistemi elde edilmesi ve engel tespiti

    Obtaining a new type 3D LIDAR system using 2D laser scanner for autonomous vehicles and obstacle detection

    AHMET KAĞIZMAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERDİNÇ ALTUĞ