Analysis of fingerprint matching performance with deep neural networks
Derin sinir ağları ile parmak izi eşleştirme performansı analizi
- Tez No: 726962
- Danışmanlar: DR. ÖĞR. ÜYESİ NESLİ ERDOĞMUŞ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: İzmir Yüksek Teknoloji Enstitüsü
- Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 42
Özet
Parmak izleri her kişi için benzersiz biyometrik özelliklerdir. Literatürde ve endüstride kimlik belirleme amacıyla yaygın olarak kullanılmışlardır. Biyometrik veri kümesi oluşturmak veri sahibinin izni olmadan yapılamadığından ve varolan veri kümelerinin derin öğrenme yöntemleri için yeterli olmaması, toplayan kişi ya da kurumun özel kullanımı için oluşturulması gibi sebeplerden ötürü zorlu bir iştir. Bu, sentetik parmak izi resimlerinin ve onların özellikle derin öğrenme gibi çeşitli problemlerde kullanımının önemini arttırmıştır. Bu çalışmada, Finger Convnet isimli bir sınıflandırıcı derin öğrenme modelinin performansı, literatürdeki iyi bilinen modellerle karşılaştırılmış, sentetik ve gerçek veri karışımından oluşan veri kümesinin performansının, yalnızca gerçek verilerden oluşanlara yakın ya da eşit olup olamayacağı sorusu tartışılmıştır. Deneylerin sonucu olarak, karma veri kümesinin içindeki gerçek resim sayısının belirleyici bir faktör olduğu ve performansın referans çalışmadaki sadece gerçek veri içeren veri kümesinden daha az olduğu görülmüştür.
Özet (Çeviri)
Fingerprints are unique biometric properties for each person. In the literature and industry, they are widely used for identification purposes. Collecting biometric datasets is a tedious work since it is not possible without the owners' consent, and existing fingerprint datasets are either not su cient to use in deep learning tasks by means of size or most of them are kept private to the collectors' use. This increases the need of synthetic fingerprint images and their use in a variety of tasks especially for training deep learning models. In this study, the performance of a CNN architecture named Finger ConvNet is compared to well-known networks and the question of whether a mixed dataset consisting of synthetically generated and real fingerprint images can reach a performance close or equal to ones having only real images is discussed. As a result of experiments, it is shown that the number of real images in the dataset is an important factor and that the performance of the mixed dataset was less than the one having only real images proposed in the referred study
Benzer Tezler
- Face recognition and person re-identification for person recognition
Kişi tanıma için yüz tanıma ve kişinin yeniden tanınması
EMRAH BAŞARAN
Doktora
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA ERSEL KAMAŞAK
PROF. DR. MUHİTTİN GÖKMEN
- Beden ürün diyaloğu: Beden odaklı analiz ve tasarımda yeni olanaklar
Body product dialogue: Body oriented analysis and new possibilities in design
AYŞE ASYA GÜRGÜN ÖZDEMİR
Doktora
Türkçe
2023
Endüstri Ürünleri Tasarımıİstanbul Teknik ÜniversitesiEndüstriyel Tasarım Ana Bilim Dalı
PROF. DR. GÜLNAME TURAN
- Reşadiye kaplıcasının genomik ve metaproteomik açıdan incelenmesi
A genome and metaproteomic investigation of Resadiye spring
MELİS ÇAKDİNLEYEN
Yüksek Lisans
Türkçe
2018
BiyokimyaGaziosmanpaşa ÜniversitesiBiyomühendislik Ana Bilim Dalı
PROF. DR. BİLGE HİLAL ÇADIRCI
- Automatic fingerprint identification and classification
Otomatik parmakizi tanıma ve sınıflandırma
DEVRİM ÖNDER
Yüksek Lisans
İngilizce
1997
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. METE SEVERCAN
- Parmakizi analizinde performans optimizasyonu
Performance optimization in fingerprint analysis
SALİH GÖRGÜNOĞLU
Doktora
Türkçe
2006
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiElektronik ve Bilgisayar Eğitimi Ana Bilim Dalı
DOÇ. DR. ABDULLAH ÇAVUŞOĞLU