Automatic spectrum sensing technique using support vector machine in cognitive radio network
Başlık çevirisi mevcut değil.
- Tez No: 746635
- Danışmanlar: DR. ÖĞR. ÜYESİ MUHAMMAD ILYAS
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: Altınbaş Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 67
Özet
Spektrum kullanımı için Bilişsel Radyo (CR) ağı kurulmuştur. Bu teknoloji, lisanssız kullanıcıların spektrumu lisanslı kullanıcılarla paylaşmasına olanak tanır. Böyle bir işlemi gerçekleştirmek için beyaz (lisanslı) spektrumdaki boşlukları bulmak için spektrumun periyodik olarak taranması gerekir. Bu yazıda otomatik spektrum algılama yaklaşımları önerilmiştir. Derin öğrenme sınıflandırıcısı yani Neural Network a Multilayer Perceptron (MLP) ve Gradient Boosting (GB), Support Vector Machine (SVM), Logistic Regression (L_R), K-nearest Neighbor (KNN) ve Bagging algoritması gibi makine öğrenme yaklaşımları. SVM tabanlı spektrum algılama, bu teknik kullanılarak elde edilen %94.01 spektrum algılama doğruluğu ile daha iyi performans gösterir.
Özet (Çeviri)
Cognitive Radio (CR) network is established for spectrum utilization. This technology allows unlicensed users to share the spectrum with licensed users. In order to perform such a process, the spectrum needs to be periodically scanned in order to find the voids in the white (licensed) spectrum. Automatic spectrum sensing approaches are proposed in this paper. Deep learning classifier namely Neural Network a Multilayer Perceptron (MLP) and machine learning approaches such as Gradient Boosting (GB), Support Vector Machine (SVM), Logistic Regression (L_R), K-nearest Neighbor (KNN) and Bagging algorithm. SVM-based spectrum sensing is outperformed with 94.01 % spectrum sensing accuracy was achieved using this technique
Benzer Tezler
- Körfezlerdeki su kalitesinin uydu görüntü verileri yardımıyla incelenmesi
The Evaluation of water-quality in the bays by satellite images
FİLİZ SUNAR
- Türk halılarının görüntü veri tabanı kullanarak saklanması ve sorgulanması
Başlık çevirisi yok
BARBAROS GÜNAY
Yüksek Lisans
Türkçe
1998
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUHİTTİN GÖKMEN
- Evaluating BFAST algorithm in landsat time series analysisof monitoring deforestation dynamics in coniferousand deciduous forests
Landsat zaman serisi ile iğne ve geniş yapraklı ormanlardaormansızlaşma dinamiklerinin izlenmesinde BFASTalgoritmasının değerlendirilmesi
NOOSHIN MASHHADI
Yüksek Lisans
İngilizce
2021
Bilim ve Teknolojiİstanbul Teknik ÜniversitesiCoğrafi Bilgi Teknolojileri Ana Bilim Dalı
Assist. Prof. Dr. UĞUR ALGANCI
- Derin öğrenme ile modülasyon sınıflandırması
Modulation classification with deep learning
SELÇUK BALSÜZEN
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. MESUT KARTAL
- Segmentation of satellite sar images using squeeze and attention based deep networks
Uydu-bazlı sar imgelerınde kısık dıkkat odaklı derin ögrenme kullanan segmentasyon algoritması
ELMIRA KHAJEI
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. İBRAHİM KÖRPEOĞLU