Terkos Gölünün su kalitesinin değerlendirilmesi için önyaklaşım
Başlık çevirisi mevcut değil.
- Tez No: 75583
- Danışmanlar: DOÇ. DR. ORHAN İNCE
- Tez Türü: Yüksek Lisans
- Konular: Çevre Mühendisliği, Environmental Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1998
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 460
Özet
ÖZET Bu çalışmanın amacı, göl ve rezervuarlarda su kalitesi ve ekosistem yönetimi için bilgisayar modellerinin kullanımı ve yaygın ötrofikasyon kontrol yöntemleri incelenerek çalışmaya konu alınan Terkos Gölü için uygun su kalitesi koruma iyileştirme yöntemlerinin belirlenmesidir. Ekolojik bir model kullanılarak İstanbul 'un en eski ve en büyük içme suyu kaynağı olan Terkos Gölü 'nün su kalitesindeki olası değişimler çeşitli yönetim senaryoları altında incelenmiştir. Kullanılan ekolojik model için gerekli veri düzenine uygun olarak oluşturulan tez kapsamında öncelikle Terkos Havzasının topoğrafik, hidrolojik, hidrojeolojik, meteorolojik vb. yapısı Bölüm II 'de incelenerek ekolojik yapıyı oluşturan ana unsurlar belirlenmiştir. Daha sonra Bölüm III' te havza içinde bulunan kirletici kaynaklar ve bu kaynakların nitelikleri, kirletici yükleri, gelecekteki potansiyel yükleri belirlenmiştir. Bölüm IV 'te Terkos Gölü 'nün su kalitesi belirlenmiş ve çalışmaya temel alınmıştır.“Ekolojik Model”kavramının ele alındığı Bölüm V 'te, kullanılan modelde yararlanılan süreç ve mekanizmaların genel denklem ve ifadelerine yer verilmiştir. Bölüm VI 'da modelin çalışmasına temel olan verilerin analizi ve model değerlendirilmesi için yöntem seçimi, modelin göldeki ve akarsudaki su kalite parametrelerinin başlangıç koşullan değerlendirilmiştir. Model kalibrasyonu ve doğrulanması için yapılan işlemler Bölüm VII' de verilmiştir. Modelin doğrulanmasından sonra, Terkos Gölü' nün korunmasına yönelik geliştirilen yönetim seçenekleri modele senaryolar sekinde yansıtılarak bu senaryolar sonucu göl su kalitesindeki değişim Bölüm XIII 'de 2000-2020 yıllan arasında simüle edilerek, sonuçlar grafik ve tablolarla karşılaştırmalı olarak Ek A ve Ek B 'de verilmiştir.Seçilen senaryolarda öncelikle havzadaki tarım ağırlıklı arazi kullanımının gölün kirlenmesindeki en önemli etken olmasından yola çıkılarak tarım alanlarının ormana dönüştürülmesi durumunda su kalitesindeki uzun vadeli değişim incelenmiştir. Daha sonra İstanbul çevresindeki nüfus artışı ve beraberinde getirdiği kaçak yapılaşma gözönüne alınarak artan yerleşim alanlarından gelecek kirlilik yükünün yüzeysel akışla doğrudan göle ulaşması durumu ve arıtıldıktan sonra göle verilmesi durumu ayrı ayrı ele alınmıştır. Bölüm IX' da günümüzde özellikle göl ve rezervuarlar için geçerli olan ötrofikasyon kontrol yöntemleri tanıtılmış; Bölüm X 'da ise çalışmada elde edilen sonuçlar ve gölde ötrofikasyonun kontroluna yönelik öneriler verilmiştir.
Özet (Çeviri)
A PREAPPROACH USING AN ECOLOGICAL MODEL FOR WATER QUALITY MANAGEMENT OF LAKE TERKOS SUMMARY Istanbul Metropolitan area is one of the most rapidly developing cities in the world, so that drinking water supply gets more inconvenient for the municipality day by day due to rising uncontrolled industrial and rural development and subsequent pollution of the water catchment areas. Terkos Lake located at the European side of Istanbul with a catchment area of 776 km2 including 32 km2 reservoir surface area is supplying 3 1% of the water demand of the city and is under the risk of eutrophication. The intensive agricultural activities together with cattle and chicken farms seriously threaten the water quality of the reservoir although industrial pollution is not of great importance. There is also a high level of summer resorts at the catchment. The quality data of the reservoir indicate a high level of nutrient concentration although almost all the criteria for drinking water resources appear to be satisfied. According to the Istranca water supply system project under construction, clean water from Istranca mountains will be transferred to the Terkos reservoir so that supply of clean and sufficient water to Istanbul and protection of the reservoir will be ensured. The use of mathematical models to simulate ecological and water quality interactions in surface waters has grown dramatically over the past three decades. Simulation techniques offer an integrated and relatively sound course for evaluating wasteload abatement alternatives. The aim of this study is to use a relatively simple ecological model to predict the water quality in lakes and reservoirs, in Lake Terkos as a case study. The simulation of potential water quality of the lake and principles of modeling with managementobjectives are presented in detail. Commonly used eutrophication control methods are also investigated to propose suitable control alternatives for Lake Terkos. In Chapter I the aim and scope of this study are briefly given. Chapter II includes the characteristics of the drainage basin that are necessary in running the simulation model. The application of such a model requires preliminary studies concerning the topographical, hydrological, hydrogeological status of the water catchment area. All water sources discharging into the lake are determined in terms of flowrates and are evaluated on the water quality parameters. Land use, soil properties, flora and fauna of the catchment area are known to be significant factors affecting the water quality of the lake. This direct effect is clearly observed during the hydraulic calculations. Mass balance studies show the major water source feeding the Lake Terkos is Istranca stream. Other factors affecting the water quality of the lake may be stated as population growth, agricultural activities and the demand for more residential areas. In Chapter III, the point and diffuse pollution sources and their characteristics are evaluated. During the evaluation step, domestic wastewater and pollution sources arisen by agricultural activities are determined to be the two basic pollution sources affecting the lake. So the model was used to simulate the effects of these two pollution sources on Lake Terkos in the next twenty years. Water quality of Lake Terkos and the streams feeding the lake is widely discussed in Chapter IV after representing different water quality classification criteria. Recent studies related to the water quality of the lake indicate a high level of nutrients, which predicts that the mesotrophic status of the lake is changing to an eutrophic status. In Chapter V, the scope of modeling at present, the concept of an ecological model and general structure of the Ecological Model presented are described. The ecological model is mainly based on the concept of conservation of mass and on similar kinetic relationships related to BOD, nitrogen, phosphorus and dissolvedoxygen including biochemical phenomena of algal growth, death and respiration, photosynthesis, sedimentation, phosphorus and nitrogen uptake by algae, settlement of detritus, and physicochemical processes affecting oxygen balance. The main mass conservation equations used in the model are as follows; a) Water mass balance: SYi St Qir“ Qij + P; - Ei b) Substance mass balance: d& Vi - - = QA + Wi - QiASi + E'aî (Sa - S;) + V8 ris dt Mass transfer Inflow Outflow Diffusion Source and sink. Source and sink for abiotic parameters: r j = Kai.(Ssi - Si) - Kn.Si - K2i.Si/di + K3i.Si/di + a.(K4i-Ksi).Ai + b.K^.Ai Reaeation Decay Settling Chemical Biotic Biotic by-products, transformation exchange death. Source and sink for biotic parameters: T; - (K4İ - K5J - Köi - K.7i/ dj). A i Photosynthesis Respiration Death Settling V; : volume of the compartment i Qir : flow incoming to the compartment i from river or point source Qij : flow outgoing from the compartment i into the compartment j or out of the system P; : direct precipitation incoming to the compartment i E; : direct evaporation from the compartment i S;, : concentration of substance in inflow to the compartment i from river or point sourceSj : concentration of substance in compartment j (generally greater than SO Wj : diffuse source of matter incoming to the compartment i from the catchment including gain of substance due to precipitation to the surface of the lake E j; : horizontal diffusion from compartment j to compartment i As : rate of transformation of substance S in compartment i Kai : reaeration rate constant for substance S in compartment i Sis : saturation concentration of substance S in compartment i Ki, : decay rate of substance S in compartment i K2i : settling rate of substance S in compartment i d j : water depth in compartment i K3{ : chemical transformation (via adsorption, mineralization, etc.) rate of substance S in compartment i a, b : conversion factor from biotic form into form in the medium K4 i, K5 i : production, consumption rate constant of S during biotic growth K2 + P - R - Sb Tbod - -Krf Sbod TOrgN = ”KhOrgN/d - KorgN SorgN TNH3 = KorgN SorgN + KjiNTO /d - K.NH3 Snh3“ ?N MUn fN02 = KnH3 Snh3 - Knû2 Sn02 rNo3 - K no2 Snoj - ( 1 - Pn) Mun - K hNo3 Sno3 / d rpo4 = - Kpo4 Spo4 + Khpo4 / d - MuP TOrgP = ”KhOrgP SorgP / d + K po4 Spo4 rAig = (Mu A-rA-SA-mA)A rsed =(Ds / V + (s A + m A) A - Gs where p, R and Sb represent photosynthesis, respiration and sediment oxygen demand and MuA, Mun and MuP are algal growth rate, nitrogen and phosphorus uptake ratecoefficients by algae. An algal preference factor for ammonia nitrogen, PN, is used in order to determine fraction of algal nitrogen uptake from the ammonia pool when the concentrations of ammonia and nitrate nitrogen are equal. The model itself and input data are structured in Microsoft Excel application. The lake is divided into five hydraulic compartments taking in consideration the horizontally extended morphology of the shallow Lake Terkos. Conservation of mass equation is adapted to each element in every compartment in close relationship with each other. The lake was assumed to be a completely mixed reactor in the vertical direction where all mass and quality variations take place in the horizontal direction. Steady state assumption was considered to be available for constant initial hydrologic and meteorological conditions during a quite long interval in order to estimate the effects of the pollutant loadings on water quality. The mass transfer in the compartments is directed mainly by horizontal water flow and also by Eddy horizontal diffusion of a smaller extent. In Chapter VII the data such as precipitation, evaporation, lake volume variations, point and diffuse pollutant loadings used as input in the model are collected from the Terkos Lake Final Report and Durusu Park Houses Project Environmental Impact Assessment Report and other studies listed in the“References”Section were evaluated to get available in the model. Flows reaching the reservoir and their water quality in terms of BOD5, nitrogen, phosphorus and dissolved oxygen are calculated for an interval of three decades to control the trend of pollution. The water mass balance is supplied using long term data such as of Istranca stream flow, monthly and yearly meteorological variations, withdrawal from the lake and volume variations. The water quality data obtained from the studies of DSİ and İSKİ in the catchment area between 1982-1986 were used to calibrate the lake coefficients. The output data is checked with similar experimental data of 1987-1992 and with mean values of experimentation period when recent data lacked.Simulation of the water quality for years 2000, 2010 and 2020 is based on different management scenarios generated from the point of view of the Lake Terkos protection project prepared by İTÜ and the results are represented by means of comparative graphics in Chapter VIII. Main eutrophication control methods applied to lakes and reservoirs worldwide are given in Chapter IX, and some of them are proposed for Lake Terkos water quality management. Control of both point and diffuse sources of nutrients is of great importance. For the control of external nutrient load; direct reduction of nutrients at source, treatment of tributary inflows, and canalization and/or diversion of wastewaters are the main applicable methods. Direct methods for reduction of nutrients comprise phosphate elimination by chemical precipitation during the sewage treatment, restriction of detergent phosphates, and land use controls. Control of inflows includes such alternatives as use of pre-reservoirs, physicochemical treatment of tributary inflow water prior to entering waterbody, direct addition of phosphorus precipitating chemicals into inflows, filtration of tributary water through aluminum oxide filter, and settling wetlands at the inlet of inflows. Canalization / diversion of wastewater has alternatives as diversion of wastewaters, and seepage trenches. In the final part of the study, Chapter X, the state of the reservoir resulting of the applied scenarios is evaluated by means of different water quality criteria, and some approaches in eutrophication control are given for selection of effective water quality management techniques. After OECD classification based on graphical representation of probability related to trophic state-total phosphorus relation, the lake is following a trend from mesotrophic to eutrophic and then to hypertrophic affected by rising nutrient load despite water quality classification criteria of the Environmental Ministry's“Water Pollution Control Regulations”are still met for drinking water.
Benzer Tezler
- Terkos gölü ve havzasının (İstanbul) hidrojeoloji incelemesi
Başlık çevirisi yok
HALİL MURAT ÖZLER
Yüksek Lisans
Türkçe
1992
Jeoloji MühendisliğiHacettepe ÜniversitesiJeoloji (Hidrejeoloji) Mühendisliği Ana Bilim Dalı
PROF. DR. OKAY EROSKAY
- Developing of a groundwater flow model for the area between Terkos lake and Canal Istanbul using GIS, remote sensing and numeric groundwater modelling
Terkos gölü ile Kanal İstanbul arasındaki bölge için CBS, uzaktan algılama ve sayısal yöntemlerle yeraltı suyu akış modelinin geliştirilmesi
KHANSAA ABDULELAH AHMED AHMED
Doktora
İngilizce
2020
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ABDÜSSELAM ALTUNKAYNAK
- İklim kaynaklı deniz seviyesi yükselmesinin havza hidrolojisine etkileri
Impacts of climate-induced sea level rise on basin hydrology
SAFFET ALTINDAĞ
Doktora
Türkçe
2023
İnşaat Mühendisliğiİstanbul Üniversitesi-Cerrahpaşaİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. DİLEK EREN AKYÜZ
- Terkos Gölü'ne dökülen derelerde mikrobiyolojik ve kimyasal kirlilik düzeylerinin saptanması
The microbiological and chemical pollution levels of Terkos (Durusu) lake were investigated
BİLAL YILMAZ
Yüksek Lisans
Türkçe
2013
KimyaMarmara ÜniversitesiÇevre Bilimleri Ana Bilim Dalı
PROF. DR. ENGİN ÖZHATAY
- Kıyı alanları yönetimi ve morfolojik değerlendirme: Terkos kıyı alanı örneği
Coastal zones management and morphologic evaluation: Terkos coastal zone object model
TAYFUN CİHAN RAKICI
Yüksek Lisans
Türkçe
2008
İnşaat MühendisliğiYıldız Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. YALÇIN YÜKSEL