Taşıyıcı sistemi düzensiz çok katlı bir yapının projelendirilmesi
Başlık çevirisi mevcut değil.
- Tez No: 75609
- Danışmanlar: PROF. DR. ZEKİ HASGÜR
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1998
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Ana Bilim Dalı
- Bilim Dalı: Yapı Mühendisliği Bilim Dalı
- Sayfa Sayısı: 263
Özet
ÖZET Yüksek lisans tezi olarak, Prof. Dr. Zeki HASGÜR Yönetiminde taşıyıcı sistemi düşeyde süreksiz olan perde ve çerçevelerden oluşan 10 katlı bir yapının yatay ve düşey yükler altında statik ve betonarme hesaplan yapılmıştır. Yapı 1 bodrum ve 9 normal kattan oluşmuş bir sistemdir. Yapının bodrum ve zemin katı 213 m2, normal katlan 284 m2 dir. Yapının bodrum katının çevresi perde duvarla çevrilidir. Döşeme tipi olarak nervürlü döşeme uygun görülmüştür. Kat yüksekliği bodrum katta 2.50m, diğer katlarda 3.00m dir. Zemin kat dükkan, normal katlar daire olarak planlanmıştır. Taşıyıcı sistemin düzensizliği, düşey süreksizlik olup, bazı kolonların normal katlarda var olup, zemin katta (dükkanda) kolonsuz mekanlar elde etmek için iptal edilmesinden dolayı kirişin üzerine basması şeklinde meydana gelmektedir. Yapının statik hesaplarında üç boyutlu model oluşturularak SAP90 (Yapı Analizi Programı) yardımıyla statik ve dinamik hesap yapılmıştır. Dinamik hesapta 1995 Dinar depremi spektrumunun doğu-batı ve düşey bileşeni etki ettirilmiştir. Bulunan sonuçlar A.B.Y.Y.H.Y.(1997)'nin öngördüğü şekilde yapılan eşdeğer statik analizle karşılaştırılmıştır. Yapı 1. Derece deprem bölgesindedir. Yapının dış duvarlarında 2 yarım tuğla, iç duvarlarında 1 yanm tuğla kullanılmıştır. Çatı düz terastır. Betonarmeye esas malzeme olarak BS20 ve BÇIII kullanılmıştır. Temel sistemi olarak 1.00 m kalınlığında radye temel kullanılmıştır. Temelin statik hesabında elastik zemine oturan plak hesabı yapılmıştır. Ko=40000 kN/m3 alınmıştır. Zemin emniyet gerilmesi 150 kN/m2 dir. XVI
Özet (Çeviri)
DESIGN OF A MULTISTOREY REINFORCED CONCRETE BUILDING HAVING »REGULAR STRUCTURAL SYSTEM SUMMARY In this project, static and reinforced concrete design calculation of an irregular ten floor building that consist shear walls and columns is aimed. The irregularity of structure system is verrtical irregularity. Some columns of ground floor are cancelled because of obtain wide places. So that theese columns on the first normal floors are carried by beams. The building has one basement, one ground floor and eight normal floors. Basement and ground floor is 213 m2, normal floors are 284 m2. Dimension of basement and ground floor is 16.00 m by 13.90 m, the other's is 19.00 m by 15.40 m Basement is surrounded by shear walls. The height of basement is 2.50 m, other's is 3.00 m. The ground floor is planned as store floor and the others are planned as apartment block. Building is supposed to be constructed in the first degree seismic zone according to the map appended to the“specifiations for the building to be natural disaster”. Design loads are taken from Turkish Standard 498 for live loads and dead loads. The design is based on specification as well as TS500,“building loads requirements for reinforced concrete”. A frame-shear wall system is choosen as structural system on C20, BÇIII are as materials for being concrete and steel, respectively. The behaviour system is supposed to be elastic. The static and dynamic calculations are made by use of the computer software SAP90. The structure system has 1254 degree of freedom. Five unfavourable loadings are considered at the calculation of structural system under vertical loads. Unfavourable effects are taken from literature 2. Value of solution find out as value at side of support. At the analysis under horizontal loads, as being surrounded around the basement with shear walls, the basement is more rigid than the upper floors. In this case, displacements of basement floors are smaller than other floor. So that behaviour of basement floor under earthquake is more than different other's. The basement floor is supposed to have a lower partition and other floors are supposed to have a upper partition. Since the basement rigidity is bigger than upper part due to to shear walls around basement, the cofficent S(T) is assumed to be 1 and Ra(T) is assumed to be 1.5. As a final design of the system vertical load solution and horizontal load results are combined taking into account the maximum reinforcement ratio at the column and beam sections. xvThe method involved in the software program for analysing the system statically is a matrix displasement method and by this method the solution of the system of the linear equation represented by: {K}{U}={R} where {K} is the stifhess matrix {U} is the vector of resulting displacements {R} is the vector of applied loads, Each joint of the structural model has three displacement components, X,Y and Z and three global rotations, RX, RY and RZ. At the calculation of the statically equivalent earthquake loads, some other effects must be taken into consideration as the earthquake forces in x, y, z directions do not effect in the main directions separately to the constructions. For these purpose, according to calculation style in 1997 Turkish Earthquake code, 30 % of the earthquake forces acting in other directions is added to the inter effect that is formed one direction. The natural period of the building is determined by using those values for different X and Y directions. In this acceptance to calculate the earthquake effect in vertical direction and to find the earthquake load in the Z direction 2/3 of the average of the total horizantal load that effect to the construction in X and Y directions is taken and by dividing at the rate of the column effect field, it is applied on the columns which are on the beam in vertical direction. As an initial study to find most inadequate earthquake combination at the solution in the dynamic load, all the loads ar accepted to be at the joining at the each other, in the three- dimensional model. As dynamic effect, response spectrum curves, with 0.05 damping ratio in East-West and vertical direction of Dinar 1995 earthquake have been used. Different type of combination such as X- (Y/7-Z/7), Y- (X/7- Z/7), Z- (X/7-Z/7), V(X2+Y2), V(X2+Y2+Z2), V(X2+Y2)+Z/7), |X | +|Y |+|Z |, are applied. For the purpose of doing the structural dynamic analysis lumped masses are gathered at the nodes and rigid diaphram model is accepted in the joint points 280, 380... 1080, the major joint point (master joint) to define the rigid diaphram model. Master joints are prevented from position changes in vertical directions and rotations around X and Y axes. Dynamical analysis of structure is done by using SAP90 (version 5.40) software with response spectrum analysis. Spectrum curve shaving the 0.05 damping rate in East- West and vertical directions of 1995 Dinar earthquake, have been used outer effect. Behaviour coefficent of structural system R concerning the construction ductility is taken as 7 according to given value for the high ductility, frame-shear wall construction at the earthquake code 1997. In dynamic anaysis as a result of act of East-West component of Dinar earthquake on X and Y directions, the construction has been made affective by giving mass of Kl 1 1 to include the effect of earthquake vertical directions, at the center of Kill beam. SAP90 solves this equation system with modal superposition response spectrum approach. Floor accelarance is given xvmfrom the data as response spectrum curve showing the change of spectral acceleration relative to time period. Data preparation for the structural analysis, basically involves : (1) Describing geometry and (2) defining the static and dynamic load conditions for which the structure needs to analyzed. Basic geometric dimensions of the structure are established by placing joints (for node points) on the structure each joints is given a unique identification number and is located in space with coordinates that are associated with a global three dimensional coordinate system. The structural geometry is completed by connecting the predefined joints with structural elements; namely beams, trusses, shell, plates, etc.. Each element has a unique identification number. When the structural damping is assumed as to be zero, natural frequencies analaysis spectrum require the undamped free vibration mode shapes. This involves the solution of the generalized eigen value problem. (K-co2M)(i>=0 K is the stiffness matrix M is the mass matrix a is the diagonal matrix of the eigen values
Benzer Tezler
- Taşıyıcı sistemleri farklı olan betonarme yapılarda döşeme türlerinin davranışa etkisi
The effects of the slab types to the behaviour of a reinforced concrete building with different structural systems
FATMANA GÜLÇEM YAŞOĞLU
Yüksek Lisans
Türkçe
2015
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. TÜLAY AKSU ÖZKUL
- Planda düzensiz çok katlı kaset döşemeli bir betonarme yapının boyutlandırılması
Design of an irregular multi-storey building
GÖKHAN SİVRİ
Yüksek Lisans
Türkçe
1999
İnşaat Mühendisliğiİstanbul Teknik ÜniversitesiYapı Mühendisliği Ana Bilim Dalı
PROF. DR. ZEKAİ CELEP
- Yüksek katlı bir yapının lineer ve lineer olmayan hesabı
Linear and non linear analyses of a multistorey building
ARDA BALCI
Yüksek Lisans
Türkçe
2001
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. H. FARUK KARADOĞAN
- A3 düzensizliği olan çok katlı betonarme bir yapının Türk, Eurocode ve ACI 318 yönetmeliklerine göre tasarımı
Design of a multistorey reinforced concrete building with A3 irregularity according to Turkish, Eurocode and ACI 318 regulations
SAADET GÖKÇE GÖK
Yüksek Lisans
Türkçe
2013
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. TÜLAY AKSU ÖZKUL