Advances in instantaneous and dynamiclocalization in indoor environments
Başlık çevirisi mevcut değil.
- Tez No: 758744
- Danışmanlar: Belirtilmemiş.
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: İngilizce
- Üniversite: Rutgers, The State University of New Jersey-Camden
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 116
Özet
Özet yok.
Özet (Çeviri)
The knowledge of the exact location of an object or person is an important enabler for a wide variety of applications. Localization, itself, has a long and distinguished history from sextants to the geodesic tools of modern civil engineers. The recent general availability of global positioning systems has enabled the development of new applications from car navigation and emergency assistance systems to location targeted advertisements. However these systems are largely limited to outdoor spaces preventing the accurate determination of location inside of a building. In this dissertation, we consider the issues of both the instantaneous and dynamic localization of people in an indoor environment where GPS signals are not available. We begin by studying instantaneous localization and the variety of new techniques that share the common approach of utilizing a number of fixed reference points with known locations in order to determine the location of the target. Since indoor environments usually prevent a direct line of sight from the target to a known point we need to infer the targets location from secondary measurements with varying reliability. We then outline a new method for instantaneous localization whose output not only provides the location of the target but also the confidence of the localization based on the environmental variability. ii We then examine how these factors extend to the complex scenarios of dynamic localization. In these scenarios instantaneous localization steps would need to be performed at an unrealistically high frequency in order to extract the desired smooth trajectory of a moving object. We find that by passing the results of these measurements over time through a sampling-importance-resampling particle filter can reduce the influence of noise and allow interpolation to predict the current, and sometimes future, location of the target. This particle filter utilizes a probabilistic reasoning technique to extract continuous tracking information from the periodic instantaneous location input as well as to integrate knowledge about the environment and the targets capabilities in order to provide its location. We then present the experimental results from scenarios taken from multiple indoor locations demonstrating the accuracy and precision of the localization method.
Benzer Tezler
- Drone ile drone takibi için dağıtık derin takviyeli öğrenme yaklaşımları
Distributed deep reinforcement learning approaches for drone tracking with drone
ZİYA TAN
Doktora
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET KARAKÖSE
- Sincap kafesli asenkron makinenin rotor alan yönlendirmeli kontrolü
Rotor field-orientation control of a squirrel cage induction machine
SAFFET ALTAY
Yüksek Lisans
Türkçe
1995
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiPROF.DR. M. EMİN TACER
- The impact of IOT on supply chain integrations & agility on supply chain performance in the retail sector in Türkiye
Başlık çevirisi yok
ANAS ABDELHADI
Doktora
İngilizce
2024
Uluslararası TicaretYeditepe ÜniversitesiUluslararası Ticaret ve Lojistik Yönetimi Ana Bilim Dalı
PROF. DR. ERKUT AKKARTAL
- Optimized power control strategy for a proton exchange membrane fuel cell system
Proton değişim membranlı yakıt hücresi sistemi için optimize edilmiş güç kontrol stratejisi
ÖMER BURAK SARIÇAY
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
PROF. DR. FİKRET ÇALIŞKAN
- Development of a learning based trajectory tracking controller for autonomous vehicles
Otonom araçlar için öğrenme tabanlı yörünge takip kontrolörünün geliştirilmesi
HASAN ŞENER
Yüksek Lisans
İngilizce
2022
Makine MühendisliğiMarmara ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ UĞUR TÜMERDEM
DR. İSMAİL HAKKI SAVCI