Higher accuracy methods for fluid flows invarious applications: Theory andimplementation
Başlık çevirisi mevcut değil.
- Tez No: 759304
- Danışmanlar: DR. ALEXANDER E. LABOVSKY
- Tez Türü: Doktora
- Konular: Makine Mühendisliği, Mechanical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: Michigan Technological University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 154
Özet
Özet yok.
Özet (Çeviri)
This dissertation contains research on several topics related to Defect-deferred correction (DDC) method applying to CFD problems. First, we want to improve the error due to temporal discretization for the problem of two convection dominated convection-diffusion problems, coupled across a joint interface. This serves as a step towards investigating an atmosphere-ocean coupling problem with the interface condition that allows for the exchange of energies between the domains. The main diffuculty is to decouple the problem in an unconditionally stable way for using legacy code for subdomains. To overcome the issue, we apply the Deferred Correction (DC) method. The DC method computes two successive approximations and we will exploit this extra flexibility by also introducing the artificial viscosity to resolve the low viscosity issue. The low viscosity issue is to lose an accuracy and a way of finding a approximate solution as a diffusion coeffiscient gets low. Even though that reduces the accuracy of the first approximation, we recover the second order accuracy in the correction step. Overall, we construct a defect and deferred correction (DDC) method. So that not only the second order accuracy in time and space is obtained but the method is also applicable to flows with low viscosity. Upon successfully completing the project in Chapter 1, we move on to implementing similar ideas for a fluid-fluid interaction problem with nonlinear interface condition; the results of this endeavor are reported in Chapter 2. In the third chapter, we represent a way of using an algorithm of an existing penalty-projection for MagnetoHydroDynamics, which allows for the usage of xi the less sophisticated and more computationally attractive Taylor-Hood pair of finite element spaces. We numerically show that the new modification of the method allows to get first order accuracy in time on the Taylor-Hood finite elements while the existing method would fail on it. In the fourth chapter, we apply the DC method to the magnetohydrodynamic (MHD) system written in Elsásser variables to get second order accuracy in time. We propose and analyze an algorithm based on the penalty projection with graddiv stabilized Taylor Hood solutions of Elsásser formulations.
Benzer Tezler
- Fraktal geometri ve hidrolik pürüzlülük
The Fractal geometry and the hydraulic roughness
SAİT ALANSATAN
- A high-order finite-volume solver for supersonic flows
Ses üstü akışlar için yüksek mertebe bir sonlu hacim çözücüsü
GREGORIO GERARDO SPINELLI
Doktora
İngilizce
2022
Astronomi ve Uzay Bilimleriİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
DOÇ. DR. BAYRAM ÇELİK
- An immersed boundary implementation using a high order compact scheme on a graphics processing unit
Grafik işleme birimi üzerinde yüksek mertebe kompakt şema kullanılarak gömülü sınır uygulaması
UFUK ÖZCAN
Yüksek Lisans
İngilizce
2015
Mühendislik Bilimleriİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
PROF. DR. FIRAT OĞUZ EDİS
- Gemi pervanesi performans karakteristiklerinin lineer olmayan kanat elemanı momentum teorisi ve hesaplamalı akışkanlar dinamiği yöntemleriyle incelenmesi
Investigation of marine propeller performance characteristic with nonlinear blade element momentum theory and computational fluid dynamics methods
AHMET SOYDAN
Yüksek Lisans
Türkçe
2018
Gemi Mühendisliğiİstanbul Teknik ÜniversitesiGemi İnşaatı ve Gemi Makineleri Mühendisliği Ana Bilim Dalı
PROF. DR. ŞAKİR BAL