Geri yayılımlı birlikte evrim ile iyileştirilmiş derin sinir ağları kullanılarak yol çatlak tespiti
Road crack detection using deep neural networks developed via cooperative coevolution with backpropagation
- Tez No: 761699
- Danışmanlar: PROF. DR. TURAN ARSLAN
- Tez Türü: Yüksek Lisans
- Konular: Ulaşım, Transportation
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 103
Özet
Çatlaklar trafik yükleri etkisi ile alt tabakadan başlayarak kaplama yüzeyine kadar oluşan yüzeysel hasarlardır. Oluşan bir çatlak hasarının büyümeden tespit edilip gerekli bakımlarının yapılması hem yol konforuna hem de bakım için yapılacak harcamalara olumlu olarak katkıda bulunmaktadır. Bu çalışmada yol üzerinde bulunan çatlakları gerçek zamanlı ve yüksek doğrulukta tespit etmek amaçlanmıştır. Bu kapsamda Geri Yayımlı Birlikte Evrim yaklaşımıyla İyileştirilmiş Derin Sinir Ağları ve görüntü işleme yöntemlerini birlikte kullanılmıştır. Çalışmada çeşitli sayıda ve boyutta çatlak görsel verileri içeren EdmCrack600, AsphaltCrack, CFD ve CrackSegmentation veri setlerinden yararlanılarak yeni bir veri seti elde edilmiş ve bu veri seti üzerinde Derin Sinir Ağları tabanlı öğrenim gerçekleştirilmiştir. Görüntü işleme teknikleri sayesinde ise çatlak tespiti yapılan görsel içerisinden çatlak olmayan nesneler arındırılmış ve çatlağın kabaca konumunu gösteren siyah-beyaz bir resim elde edilmiştir. Son olarak kabaca konumu belirlenmiş çatlak üzerinde en iyi öğrenme gerçekleştirmiş ağ yapısına ait parametreler kullanılarak alan bazlı çatlak tespiti yapılmıştır. Modelin doğruluğu CFD veri seti kullanarak Keskinlik, Duyarlılık ve F1-Score kriterleri ile değerlendirilmiştir. Değerlendirme sonucunda, önerilen yöntem maksimum saniyede 48 görsel üzerinde çatlak tespiti yapabilirken %92,74 Kesinlik, %88,92 Duyarlılık ve %89,61 F1-Score başarı yüzdelerine erişebildiği gözlenmiştir.
Özet (Çeviri)
Cracks are superficial damages that occur from the substrate to the pavement surface due to the effect of traffic loads. Detecting a crack damage before it grows and performing the necessary maintenance contributes positively to both the road comfort and the expenses to be made for maintenance. In this study, it is aimed to detect the cracks on the road in real time and with high accuracy. In this context, Deep Neural Networks Developed via Cooperative Coevolution with Backpropagation and image processing and image processing methods were used together. In the study, a new data set was obtained by using EdmCrack600, AsphaltCrack, CFD and CrackSegmentation datasets containing cracked visual data in various numbers and resolutions, and Deep Neural Networks-based learning was performed on this dataset. Thanks to image processing techniques, objects without cracks were removed from the image in which cracks were detected, and a black-and-white picture showing the rough location of the crack was obtained. Finally, area-based crack detection was performed by using the parameters of the network structure that performed the best learning on the roughly positioned crack. The accuracy of the model was evaluated with Precision, Sensitivity and F1-Score criteria using CFD dataset. As a result of the evaluation,it has been observed that the proposed method can detect cracks on 48 images per second, while it can reach 92.74% Precision, 88.92% Recall and 89.61% F1-Score success rates.
Benzer Tezler
- Fake news classification using machine learning and deep learning approaches
Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması
SAJA ABDULHALEEM MAHMOOD AL-OBAIDI
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR
- Evolutionary adaptation and dopamine modulated learning in spiking neural networks
Atımlı sinir ağlarında evrimsel adaptasyon ve dopamin modülasyonlu öğrenme
ABDURREZAK EFE
Yüksek Lisans
İngilizce
2021
Bilim ve Teknolojiİhsan Doğramacı Bilkent ÜniversitesiMalzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı
YRD. DOÇ. DR. SEYMUR JAHANGIROV
- Application of matrix product states for few photon dynamics and quantum walks in reduced dimensions
Matris çarpım durumları formalizminin düşük boyutlarda az sayıdaki fotonların dinamiğine ve kuantum yürüyüşlerine uygulanması
BURÇİN DANACI
Doktora
İngilizce
2021
Fizik ve Fizik Mühendisliğiİstanbul Teknik ÜniversitesiFizik Mühendisliği Ana Bilim Dalı
DOÇ. DR. AHMET LEVENT SUBAŞI
- Türkçe metin kütüklerinde geri yayılımlı nöron ağı kullanarak karakter tanıma
Character recognition on Turkish text images using back propagation neural nat
HAKKI AKSOY
Yüksek Lisans
Türkçe
1992
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. DR. ÜNAL YARIMOĞAN
- İleri beslemeli geri yayılımlı yapay sinir ağlarının incelenmesi
Investigation of feedforward backpropagation artificial neural networks
YUNUS AKSU
Yüksek Lisans
Türkçe
2019
BiyoistatistikVan Yüzüncü Yıl ÜniversitesiBiyoistatistik Ana Bilim Dalı
PROF. DR. SIDDIK KESKİN