Geri Dön

Optimizasyon teknikleri ve sinirsel ağlar kullanılarak araç kayar kapı sistemi parametrelerinin tahmini

Prediction of vehicle sliding door system parameters using optimization techniques and neural networks

  1. Tez No: 762080
  2. Yazar: CANER GÜVEN
  3. Danışmanlar: PROF. DR. FERRUH ÖZTÜRK
  4. Tez Türü: Doktora
  5. Konular: Makine Mühendisliği, Otomotiv Mühendisliği, Mechanical Engineering, Automotive Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Bursa Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Otomotiv Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 76

Özet

Tez çalışması, araç kayar kapı sistem tasarım parametrelerinin tahmininde yapay sinir ağları (YSA) ve Bayes Optimizasyonu (BO) kullanılarak gerçekleştirilen çok amaçlı bir optimizasyon uygulaması tanımlamaktadır. YSA, özellikle karmaşık ve belirsizlik içeren matematiksel modellerin çözümünde kullanılmaktadır. Analitik olarak çözümünde zorluklar olan kara kutu problemlerde etkin sonuç vermektedir. Belirsizlikler içeren, ancak maliyetli fiziksel testler veya uzun süren simülasyonlar gerektiren problemlerde de çözüm için uygun bir yaklaşımdır. Çalışma kapsamında ele alınan kayar kapı sistem tasarımı da belirsizliklerin fazla olduğu karmaşık bir problem olduğu için tasarım parametrelerinin tahmin ve optimizasyonunda YSA ve BO kullanılmıştır. Sonlu elemanlar yöntemi kullanılarak gerçekleştirilen dinamik analizlerin ardından, parametrelerin farklı değerlerine karşılık gelen analiz sonuçları YSA ve BO kullanılarak tahmin edilmiştir. Ardından genetik algoritma (GA) kullanılarak çok amaçlı optimizasyon problemi için optimum çözüm elde edilmiştir. Uzun analiz süreleri ortadan kaldırılarak daha hızlı ve esnek bir yöntem sunulmuştur.

Özet (Çeviri)

This work describes an application of using the artificial neural network and Bayesian optimization based multi-objective optimization to predict the design parameters of vehicle sliding door system. Artificial neural network is used to solve complex and uncertain models. It gives effective results in black box problems that have difficulties in solving analytically. It is also a suitable approach for solving problems that involve uncertainties but require costly physical test or long run simulations. Artificial neural network and Bayesian optimisation were used in the prediction and optimization of the design parameters, since the sliding door design, which is considered within the scope of the study, is a complex problem with high uncertainties. After performing explicit dynamic analyses with the finite element method, the analysis results for different input values of the design parameters were predict using artificial neural network and Bayesian optimisation. Regression, artificial neural network, and Bayesian optimisation results are compared for prediction performance. Then, the optimal solution of the genetic algorithm (GA) for the multi-objective optimization problem was obtained. By eliminating long analysis times, a more flexible and faster method is presented.

Benzer Tezler

  1. Architectural form exploration by soft computing: The case of post-disaster shelter

    Esnek hesaplama aracılığıyla mimari biçim arayışları: Afet sonrası barınak örneği

    FÜSUN CEMRE KARAOĞLAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Mimarlıkİstanbul Teknik Üniversitesi

    Bilişim Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SEMA ALAÇAM

  2. Optimizasyon teknikleri ve sinirsel ağlar kullanılarak araç alaşım jantlarının tasarımı ve tasarım doğrulaması

    Design and design validation of vehicle alloy wheels using optimisation techniques and neural networks

    ANIL TOPALOĞLU

    Doktora

    Türkçe

    Türkçe

    2022

    Otomotiv MühendisliğiBursa Uludağ Üniversitesi

    Otomotiv Mühendisliği Ana Bilim Dalı

    PROF. DR. FERRUH ÖZTÜRK

  3. Portfolio optimization with wavelet analysis and neural fuzzy networks

    Dalgacık analizi ve bulanık sinir ağları modeli ile portföy optimizasyonu

    ÖMER ZEKİ GÜRSOY

    Doktora

    İngilizce

    İngilizce

    2022

    İşletmeİstanbul Teknik Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. OKTAY TAŞ

  4. Sinir ağları ve optimizasyon metodu ile yüksek mertebeden diferansiyel denklemlerin nümerik çözümleri

    Numerical solutions of high-order differential equations using neural networks and optimization method

    ŞELALE ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    MatematikVan Yüzüncü Yıl Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. FEVZİ ERDOĞAN

  5. A low complexity detector for very large MIMO

    Geniş MIMO sistemlerde hızlı kod çözme yöntemleri

    ERGİN ASLAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ERTUĞRUL ÇELEBİ