Leaf area index and above ground biomass estimation fromunmanned aerial vehicle and terrestrial lidar data usingmachine learning approaches
Başlık çevirisi mevcut değil.
- Tez No: 771875
- Danışmanlar: DR. BENJAMİN BREDE, DR. HARM BARTHOLOMEUS
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Havacılık ve Uzay Mühendisliği, Computer Engineering and Computer Science and Control, Science and Technology, Aeronautical Engineering
- Anahtar Kelimeler: Terrestrial LiDAR, UAV LiDAR, Above Ground Biomass, Leaf Area Index, Machine learning, Precision Agriculture
- Yıl: 2021
- Dil: İngilizce
- Üniversite: Wageningen Universiteit
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 67
Özet
Above-ground biomass (AGB) and leaf area index (LAI) are two critical crop parameters for evaluating crop growth, health, and productivity. Various techniques have been used in the past for the estimation of crop parameters. Development and accessibility of remote sensing technologies by airborne, ground devices, satellites opened a new era for estimating the crop parameter. In this paper, the crop parameters LAI and AGB were estimated using Unmanned Aerial Vehicle LiDAR and ground-based Terrestrial Laser Scanning (TLS) data applying three machine learning methods over four crop types with different canopy properties; wheat, sugarbeet, soybean and maize. The study compared how the predictive performance of three modelling techniques multiple linear regression (MLR), random forest regression (RFR), support vector machine regression (SVR) differ, how the predictability performance differ between crop parameters, crop types and LiDAR sensors. The analysis was carried out using all the crop samples obtained and the crop-specific. Two statistical criteria were used as evaluation metrics, the coefficient of determination (R2 ) and Root Mean Square Error (RMSE). The results obtained from the models applied with all crop samples indicated that the predictability performance of AGB was over 0.80 𝑅 2 and the LAI was predicted with the 𝑅 2 of 0.76. In crop-specific modelling, the estimation of soybean and maize AGB and LAI parameters with models applied with features obtained from both UAV-LS and TLS data was satisfactory. The prediction was failed on sugar beet AGB estimation (𝑅 2 in 0.54–0.76 range) and wheat LAI prediction (𝑅 2 in 0.46–0.86 range). Based on the model performances, the RFR and SVR models performed better than the linear model MLR in most of the analyses. The models compared to the data of the sensors used in this study, the models applied with the features obtained from UAV-LS and TLS gave similar 𝑅 2 and 𝑅𝑀𝑆𝐸 when made with all crop samples. However, in crop-specific analyses, the models applied with the features obtained from UAV-LS showed a powerful performance in all LAI estimation models. Although the results obtained from models applied using TLS and UAV-LS features to estimate AGB were very close, only sugarbeet AGB estimation gave better results with TLS data than UAV-LS. Given these results, the lacking application in crop studied with LiDAR remote sensing will be a step to close to fill the gap using both TLS and UAV-LS derived data for several crop types.
Özet (Çeviri)
Özet çevirisi mevcut değil.
Benzer Tezler
- Aiding agricultural practices with the exploration of earth observation data via machine learning
Yer gözlem uydu verilerinin tarımsal uygulamalara yardımcı olmak amacıya makine öğrenme algoritmaları ile incelenmesi
MEHMET FURKAN ÇELİK
Doktora
İngilizce
2023
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. ESRA ERTEN
- DSSAT bitki simülasyon modeli ve uzaktan algılama verilerinden elde edilen indisler kullanılarak buğday verim tahmini: İslahiye ve Nurdağı örneği
Wheat yield estimation using DSSAT crop simulation model and indices obtained from remote sensing: Islahiye and Nurdagi case
ÖMER VANLI
Doktora
Türkçe
2019
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
DOÇ. DR. BURAK BERK ÜSTÜNDAĞ
- Spektral vejetasyon indeksleri ile bitkilerin biyofiziksel özelliklerinin tespiti ve değerlendirilmesi
Determination and assessment of the plants' biophysical characteristics through spectral vegetation indices
SEZEL KARAYUSUFOĞLU UYSAL
Doktora
Türkçe
2021
Meteorolojiİstanbul Teknik ÜniversitesiMeteoroloji Mühendisliği Ana Bilim Dalı
PROF. DR. LEVENT ŞAYLAN
- Vejetasyon yüzeyindeki sera gazı (CO2) değişiminin mikrometeorolojik yöntem ile belirlenmesi
Determination of the greenhouse gas (CO2) exchange on the vegetation surface by micrometeorological method
MERVE KIZIL AYDIN
Yüksek Lisans
Türkçe
2022
Meteorolojiİstanbul Teknik ÜniversitesiMeteoroloji Mühendisliği Ana Bilim Dalı
PROF. DR. LEVENT ŞAYLAN
- Kısa rotasyonlu bitkilerle ağaçlandırma ile farklı kavak (Populus sp.) genotiplerinden toprak-üstü odunsu biyokütle üretimi
Above-ground woody biomass production and below-ground biomass production of different populus genotypes in a short rotation coppice plantation
KÜBRA SÖNMEZOĞLU
Yüksek Lisans
Türkçe
2014
EnerjiMarmara ÜniversitesiBiyoloji Ana Bilim Dalı
DOÇ. DR. İBRAHİM İLKER ÖZYİĞİT
PROF. DR. REINHART CEULEMANS