Geri Dön

Yapay zeka ve gökdelen tasarımı

Artificial intelligence and skyscraper design

  1. Tez No: 787930
  2. Yazar: ŞELALE ELÇİN SUNGUR DÖLGEN
  3. Danışmanlar: DOÇ. DR. ÜMİT TURGAY ARPACIOĞLU
  4. Tez Türü: Doktora
  5. Konular: Mimarlık, Architecture
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Mimar Sinan Güzel Sanatlar Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Mimarlık Ana Bilim Dalı
  12. Bilim Dalı: Mimarlık Bilim Dalı
  13. Sayfa Sayısı: 398

Özet

Gokdelen ve yuksek yapilar gerek yapim teknolojileri gerek ise aerodinamik cozum mekanizmalari baglaminda insa edilmesi zor kompleks yapilar olarak bilinir. Gokdelen yapim sistemlerindeki zorlugun temel nedeni ilk kez Alan Davenport tarafindan ortaya atilan ruzgar muhendisligi kavrami ve ruzgarin yapi uzerine bindirdigi tahrip edici gucudur. Ruzgar, gokdelen sistemlerinde yukseldikce artan hizi nedeniyle gerek cephe konstruksiyon sistemine gerek ise yapinin ana strukturel sistemine kontrol altinda tutulmasi gerekli sorunlar yaratir. Ruzgarin“along wind force”ve“across wind force”olarak bilinen , binanin ruzgar ile ayni yonde ve ruzgarla 90 derece aci yapacak yonde olusturdugu iki etkin kuvvetin arasinda bir denge moment etkisinde kalir ve ruzgar siddetinin olusturdugu yikici etkiye karsi devrilmemek adina kendi strukturel sistemini ve aerodinamik cozum mekanizmalarini kullanir. Ruzgar ile ayni yonde olan along wind force olarak adlandirilan ruzgar yuku ruzgar surukleme kuvvetidir. Ruzgarin binayla arasinda yarattigi dogal surtunme kuvveti kaynakli bu kuvvet yapi uzerinde dogal bir rezonans yaratir ve bina ust kotlarinda“sway”salinim etkisi olusturur. Sway salinim etkisinin kabul edilebilir ve kontrol edilebilir limitler icerisinde kalmasi esastir. Sway rezonans etkisi yapi icerisinde yasayan insanlarin konfor gereksinimleri uzerinde de onemli etki yaratir. Colorado gibi siddetli etkin ruzgar yukunun oldugu bolgelerde , aktif sway rezonans etkisi yapida uzun sure etkili oldugu durumlarda yapi malzemesi uzerinde hasar yaratici etki olusturur. Malzemenin uzun sureli rezonans etkisine tabi olmasi ic dokuda ara kilcal catlaklara neden olur ve yapi malzemesinin mukavemet gucunu etkiler. Gokdelen sistemleri 1950 li yillarda celik tubuler sistem agirlikli insa edilmekle birlikte, gunumuzde gokdelen strukturel cozumlerinde betonarme ve celigin birarada kullanildigi aktif kompozit sistemler tercih edilmektedir. Bu anlamda, yapida sway rezonans etkisi ile meydana gelen deformasyon yapinin celik sistem yada kompozit sistem ile insa edilmis olmasi gibi strukturel parametre degisimlerine de baglidir. Kompozit sistemde betonarme olarak insa edilmis olan bolum sway rezonans etkisinin yarattigi tahribattan daha cok etkilenektir. Bir diger acidan da yapida celik olarak insa edilen bolumlerde primer deformasyon daha az olussa sa , celigin deplasman kuvveti altindaki salinimi ve yer degistirme faktoru daha fazla olacaktir. Sway rezonans etkisini yaratan ruzgar yukune ( along wind force) 90 derece aci ile bileske kuvvet olusturan ikincil kuvvet yanal ruzgar yuku olan across wind force 'dur. Across wind force yapida direkt yikici etki yaratmak yonunde calisir. Lift kaldirma kuvveti yonunde isleyen bu sistem, surtunme kuvveti lehine isleyen along wind force gibi uyumlu bir sway etkisi yaratamaz, aksine, yapinin strukturel diencinin zarar gormesine neden olur. Bu iki etkin kuvvet altinda yapi temelleri ile stabilize olmaya calisan , hem yanal hem ana ruzgar yukune dayanan sistem torsional moment etkisi denen bir eksenel donme etkisi altinda ruzgarin tahrip edici gucune maruz kalir. Bu amacla yapi aerodinamik uyumlu form yardimiyla kendini korumak uster ve yuksek yapilar temelde, 6 ana aerodinamik etkin metot tarafindan sekillendirilir. Bunlardan ilki yapinin yukseldikce sivrilmesini saglayan“taper”kristal sivrilme teknigidir. Taper teknigi“The Shard London”yapisinda da kullanilmis olan bilinen en etkin aerodinamik rezonans teknigidir. En basit anlamda nitelemek gerekirse bir dikdortgen prizmadan kristal bir piramite evrilme sureci olarak dusunulebilir. Ikinci aerodinamik teknik, yine en cok tercih edilen aerodinamik teknikler arasinda olan damper sistemleridir. Damper sistemleri + moment – moment prensibi ile calisan sistemlerdir ve ruzgarin olusturdugu ruzgar yukune karsi ona esit ama zit yonde bir etki ( guc kuvveti) meydana getirerek calisir. Hidroelastik damper sistemlerinden su bazli damper sistemlerine yada tungsten be demir gibi farkli yogunluk degerlerine sahip metallerin farklilastirilmasi ile farkli kutle ve boyutlarda damperlerin sinanmasi gibi teknikler bazinda damper sistemleri bugun 432 park avenue yapisi da dahil olmak uzere pek cok yapida etkin olarak kullanilmistir. Setback aerodinamik teknigi yapinin yukseldikce kademeli olarak bloklar halinde eksiltilmis birimleri olmasini icerir. Genellikle regular ritmik birimler halinde simetrik eksiltmeler tercih edilir. Openings sisteminde yapi uzerinde ruzgara gecis koridoru olusturacak farkli acikliklar birakilmasi amaclanmistir. Bu acikliklardan ruzgar kendine gecis yollari bulur ve yapi uzerinde devrilme etkisi yaratamadan gucunu kaybederek zayiflar ve kontrol edilebilir hale gelir. Openings ile bosluk birakma kavrami ya Shangai Finance Center 'da oldugu gibi genelde kulenin ust tepe noktasina yakin olacak sekilde tek ve buyuk bir bosluk olarak gorulur yada ritmik sirali kucuk bosluklar sekansi seklinde birkac bosluk birakilarak adeta poroz gozenekli bir yapi olusturularak ruzgara ara gecis koridorlari sunulur.“Twist, rotate”eksenel dondurme sistemleri sanayi tipi baca sistemlerinde de gormeye aliskin oldugumuz bir diger bilinen aerodinamik rezonans teknigidir. Yapinin temel taban geometri sisteminin kendi koordinar duzlemi uzerinde z koordinat sisteminin yukseklik kot irtifa degeri olmak uzere, z ekseni yonunde eksenel olarak belirli acilarla dondurulmesi ile olusturulur. Shangai Tower bu amacla bilinen en iyi twist teknigi uygulanmis yapilardan biridir.“Modify the edges”olarak bilinen kose modifikasyonlarinin yaratilmasi teknigi, yapinin her bir kat plan olceginde kose noktalarinda farkli bir takim acisal degisimler olusturulmasi anlaminda gelir. Rotate tekniginin mantiginda her kat bazinda ruzgarin carptigi geometrinin degisimi ile ruzgar gucunun kaybedilmesi amaclanirken, modify the edges dedigimiz kose modifikasyonlari olusturma tekniginin mantigi ruzgarin cephe ile yaptigi surtunme kuvvetini etkileyerek, kontrol altina alinabilir hiz degerlerine gelmesini saglamaktir. Ruzgarin yapi uzerinde aktif olarak etkili olmasini saglayan parametreleri ruzgar sihirbazi olarak bilinen Prof Alan Davenport , kendi tasarladigi ve kendi ismi ile anilan Alan Davenport'un ruzgar zincirinde aciklar. Olimpiyat zinciri gibi 5 parametreden olusan bu halkada, zincirin birinci halkasini“local wind climate”olarak bilinen yapinin bulundugu bolgedeki ruzgarin karakterinin ne oldugunun anlasilmasi olarak nitelendirilir. Zincirin ikinci halkasinda ,“terrain surrounding ”olarak bilinen yapi cevresinin ne oldugunun kriterleri yer alir. Bu baglamda yapinin tek basina bir yapi olarak buyuk bir boslugun ortasinda yada okyanusun kiyisinda mi yer almasi yada bir metropol icerisinde yogun bir alanin ortasinda mi konumlanmis olmasi yapi uzerinde cevre binalarin etkisi ile yapiya binecek, ruzgarin olusturdugu surtunme faktorunu etkileyeceginden , yapi cevresinin yogunlugu ve cevre yapilarun kat yuksekliklerinin ne oldugu , yapi uzerine binen ruzgar yukunu direkt etkileyerek yapi aerodinamigini degistirir. Ruzgar zincirinin 3.halkasinda aerodinamik response olarak tanimlanan aerodinamik cevap verme niteligi yer alir. Ruzgara karsi yapinin verdigi aerodinamik cevap yapi cephe malzemesinin ne oldugu ve yapi formunun ne oldugu gibi temel parametrelerle iliskilidir. Yapi cephe malzemesinin ne oldugu surtunme katsayisi uzerine etki edecektir, yapi formu ve geometrisi de aerodinamik optimizasyonun temelidir. Bir diger halka da , ruzgar zincirinin 4.halkasi olarak mekanik cevap niteligi yer alir. ( mechanical response criteria) Yapinin mekanik cevap niteligi ve ruzgara karsi verecegi tepkinin ne oldugu yapinin strukturel cozum sisteminin ne oldugu ile iliskilidir. Betonarme sistem, celik sistem yada her ikisinin bir arada kullanildigi kompozit sistem olarak ele alindiginda, yapinin strukturel yapim sistemine gore ruzgara karsi verdigi tepki degiskenlik gosterir. Celik yapim sistemleri ruzgara karsi daha yogun sway salinim rezonans etkisi gosterirken, betonarme yapim sistemleri daha rijit bir form olusturararak damper benzeri bir etki olusturur. Ruzgar zincirinin 5.halkasinda“design criteria”olarak bilinen tasarim kriterleri yer alir. Burada yapinin ana tasarim parametrelerinin ne oldugunun bilinmesi onemlidir. Yapida ornegin cephe cozumlemesinde, yapinin ana karkas iskelet sistemi ile cephe mulion sistemleri arasindaki minimal harekete ne olcude izin verilecegi , esneklik katsayisi , rijitlik gibi parametrelerin kararlarinin verilmesi yapinin sonuc aerodinamik cevap niteliginin ne oldugunu etkiler. Ruzgar zincirinin 3.temel parametresi olarak aerodinamik cevap niteliginin arastirilmasi amaciyla yapay zeka LSTM teknigi olarak bilinen – transfer learning – olarak acilimi saglanan olgudan yola cikilmistir. Bu mantikla, bilinen bir problemin cozumunde ise yarayan bir cozum algoritmasinin, baska bir tanimlanan problemin de cozumunde ise yarayabilir olup olmadiginin irdelenmesi amaciyla ucak kanat optimizayon sistemlerinde ise yaradigi kanitlanmis olan ucak kanat ucu optimizasyon sistemlerinin isleyis mantiginin , gokdelen yapim sistemleri uzerinde gokdelen form ve geometrisinin daha etkin aerodinamik bir form olusturulmasi amaclanarak modifiye edilmesi uzerine bir hipotez ortaya atilmistir. Bu mesnetle damper sistemlerine olan gereksinimin azaltilmasi , damperlerin kucultulmesi, minimize edilemsi yada The Shard London yapisinda oldugu gibi dapmer kullaniminin tamamen elimine edilmesinin mumkun olup olmadigi sorunsali uzerinden konu incelenecektir. Tasarim ve simulasyon asamalarindan olusacak olan tezde, tasarimi dusunulen her bir gokdelen protopinin oncelikle Rhino Grasshopper 3D ortaminda 3 boyutlu gorsel tasarimlari yapilmis, ardindan olusan 3D gorsel prototipler uzerinde ag orgusu ( mesh – grid mesh ) saglanarak ve simulasyon amaciyla Matlab – ANSYS yada Paraview programlarindan dugum noktasi ve cozum hucresi hacmi ( grid mesh volume size ) yogunluguna gore en elverisli olan simulasyon sisteminin kararinin verilmesi ve bu uygun program uzerinden sonuca gidilmesi amaclanmistir. Literatur arastirmalarinda incelenen orneklerde Japon Tanaka Tamura grubunun yaptigi ornekler, bu tez calismasi ile en yakin iliskili calisma olarak gorulmustur ancak Japon arastirma grubunun prototiplerinde sadece simetrik kesitli yapilara yer vermesi ve serbest plan semali yapilar uzerinde calismalar yapilmamis olmasi elestirel olarak nitelendirilebilecek bir yondur. Simetrik plan semali yapilar uzerine yapilan calismalarda ise literaturde genellikle tam kare yada tam dikdortgen kesitli basit plan semali yapilar yer almistir. Bunun yanisira, literaturde yapilan analiz calismalarinda , CFD tabanli yapilan simulasyonlarda tek parametre bazinda sadece basinc degisimlerinin Bernoulli diferansiyel denklemleri uzerinden hesaplandigi gozlenmistir, Bernoulli de sadece basinc spekrumu uzerine sonuclar almaya calisilirken, sadece Cp basinc katsayisi parametresi uzerine yorum saglanir. Tez baglaminda Navier Stokes denkleminde k – omega turbulans model uzerinde cozum saglanmis 3 koordinat ekseninde ( x,y,z) , hem basinc hem hiz hem de vortex ( vorticity) hesaplamalari uzerinden aerodinamik etkin modelin hangi prototipe ait oldugu sonucuna ulasilmistir. F serisi model prototipleri boyunca F9 dan F23'e kadar yapilan denemelerde F14 ve F18 model prototipleri en iyi matlab CFD simulasyonu sonuclarini vermistir. F14 modelinde hiz katsayisi 1,53 ile sinirli kalirken Cp basinc katsayisi degeri 1,64 sonucunu vermistir. F18 de Cp basinc katsayisi 1,66 , hiz katsayisi 1,50 ' de kalmistir. F serisi boyunca 4 farkli acida ( 50 derece – 80 derece arasi ) modifiye edilmis bir dik ucgene benzer nitelikte ucak kanat tipolojisi uzerinden aci ve eksenel dondurmenin etkileri konusu calisilirken, bir sonraki asamada D ve E serisinde cift kanat ve tek kanat combine bileske model prototipleri uzerine calisilmistir. E24 prototipinde 1,70 hiz katsayisi 1,64 basinc katsayisina ulasilirken vortex siddeti tekkanat ve eksenel dondurme tekniginin sinandigi bu modelde ( E24 'de), cift kanat sistemi ve eksenel dondurmenin oldugu F18 modelinin ¼ u oraninda elde edilmistir. F18 de 48 birim yogunluk olculen vortex turbulans akim siddeti E24 de 12 birim yogunlukda sinirli kalmistir. X model prototip serisine gecildiginde bu kez Rhino 3D tasarim ortaminda koordinat oryantasyonu teknigi aktive edilerek eksenel dondurme koordinatinin baslangic noktasi modifiye edilmistir. X1 den X7 ye kadar yapilan koordinat oryantasyonlarinda X4 modelinde kuzeydogu yonunde modifiye edilen prototip tasariminda hiz katsayisi degeri 2,80 e ulasarak aktif turbulans yaratmakla birlikte, basinc katsayisi degeri 1.60 larda kalabilmistir. K-omega turbulans model ve vortex etkisi altinda olusan sistemde vortex siddetinin 10,92 birim yogunluk degerinde kalmis olmasi onemlidir. Koordinat oryantasyonu teknigi ruzgar hizinin artmasina neden olsa da basinc degerinde tehlikeli bir artis yaratmamis ancak vortex akim siddeti uzerinde D serisi ve E serisindeki akim turbulans siddeti degerlerine benzer nitelikte sonuclar elde etmeyi saglamistir. University of Hertfordshire'in ucak kanat sistemleri uzerinde yaptigi calismalarin gelistirilmesi yonunde, 1-2, 1-3 ve 1-5 kat paralel plaka ara yuzey iliskisi olan ucak kanat prototiplerinin gokdelen formu baglaminda temel alinmasi uzerine UH serisi geometrileri elde edilmis, Rhino da etkin geometri sistemleri 3D 3 boyutlu modellenerek matlab CFD ortaminda simulasyona tabi tutulmustur. UH_1_3 prototip model serisinde elde edilen 1.78 hiz katsayisina karsi 1,54 Cp basinc katsayisi degeri 9,22 (birim yogunluk ) vortex akim siddeti degeri ile UH serisinden once yapilan tum sinama testlerinin onunde bir sonuc elde edilmesini saglamistir. M kanat model serisine gecildiginde M basic, MT ve MD model serileri 3 boyutlu olarak Rhino 3D ortaminda tasarlanmistir. Detaylari tezin 4.bolumunde net olarak aciklanan prototiplerden M basic model serisinde M4 prototipi 1,12 basinc katsayisina karsi 1,31 hiz katsayisi degerinde kalirken, MT model prototip serisi icerisinde MT3 prototip modeli 0,90 basinc katsayisi ile tum serilerin en etkin aerodinamik basinc degerini saglamistir. MT3 modeli icin hiz katsayisi da 1.21 degerinde elde edilmistir. MD model serisine gecildiginde MD3 prototipinde 1,89 basinc katsayisi degerine karsi 2,11 hiz katsayisi degeri elde edilmistir. Simetrik bir airfoilin aci ve uzunluk bazinda modifiye edilmesi ile olusturulan GX model serisinde GX1 prototipinin simulasyon sonuclarinda basinc katsayisi 1,73 ve hiz katsayisi 1,78 elde edilirken , GY model serisinde GY2 prototipinde; 1,65 basinc katsayisina karsi 1,54 hiz katsayisi sonucuna ulasilmistir. Finalde openings ve setback & taper kavramlarinin kullanildigi iki farkli seri tasarlanmis ve ucak kanat optimizasyon tabanli serilerin bu iki seri ile kiyaslanmasi amaclanmistir. Space ve Willis serileri olarak adlandirilan bu seriler icin her bir gruptan 4 model prototipi uretilmis ve bu modeller toplam ag orgusu ve dugum sayisi yogunlugu nedeniyle ANSYS CFD ortaminda k-omega turbulans model uzerinden cozumlenmistir. Elde edilen sonuclarda cevre binalarin ekstrakte edildigi ruzgar tuneli modeli uzerinde“Willis 3 – WL3 ”prototipi 0,753 Cp basinc katsayisi degeri ile grup icerisindeki 8 model prototipi arasindaki en aerodinamik gokdelen formu tasarimi olarak nitelenmistir. Openings regular ritmik bosluklar birakarak ruzgara gecis koridorlari olusturma tabanli yaklasim uzerinde , Space serisi olarak uretilen SP1, SP2, SP3 ve SP4 model prototipleri arasinda en aerodinamik etkin form tasarimi sonucunu veren model 0,95 Cp basinc katsayisi degeri ile SP1 modeli olmustur. Sonuc olarak, bolum 3 de yazdigimiz algoritma uzerinden , veri akis diyagraminin basamaklari izlenerek olusturdugumuz yok izi, ve aerodinamik erkin tasarim prensiplerinin multidisipliner bir bakis acisi ile ucak uzay muhendisliginden mimari tasarima aktarilmasi amacli LSTM modelinin kullanilmasi ve etkinliginin sorgulanmasi hipotezi uzerinden, Rhino Grasshopper 3D ortaminda uretilen tum gokdelen prototipleri F, D, E, X, UH, Mbasic, MT, MD, GX, GY, SP ve WL serileri arasinda en iyi sonucu veren tasarimin 0,7404 Cp basinc katsayisi degeri ile MT3 oldugu tespit edilmistir. MT3 modelinin tasarim mantigi tezin ana hipotezini olusturan NASA ucak kanat sistemleri uzerine aci kenar uzunluk –“camber angle – chord length”kavramlarinin modifiye edilmesi ile olusturulan form oldugu ve isleyis mekanizmasi olarak da“yapida ruzgar koridoru etkisi”ve“yukselerek sivrilme etkisi”kavramlarini sorguladigi onemlidir. Ucak kanat optimizasyon sistemleri mantigi ile olusturulan MT3 modeli ve ruzgar koridoru yaratma kavrami , onceden bilinen ve kullanilan openings – setback gokdelen aerodinamik modifikasyon tekniklerinin otesine gecerek, yapay zeka LSTM sistemler uzerinde uretilmis yeni bir cozum teknigi olarak tez baglaminda kanitlanmistir.

Özet (Çeviri)

ARTIFICIAL INTELLIGENCE & SKYSCRAPER DESIGN ABSTRACT Skyscrapers and tall structures are known as complex structures that are difficult to construct in terms of both construction technologies and aerodynamic solution mechanisms. The main reason for the difficulty in skyscraper construction systems is the wind engineering concept first put forward by Alan Davenport and the destructive power of the wind on the structure. Due to its speed increasing as the wind rises in skyscraper systems, it creates problems for both the façade construction system and the main structural system of the building to be kept under control. The wind, known as“along wind force”and“across wind force”, remains under the effect of a balance moment between the two effective forces that the building creates in the same direction with the wind and in the direction of 90 degrees angle with the wind, and in order not to fall against the destructive effect of the wind force, it maintains its own structural system and uses aerodynamic solution mechanisms. The wind load, called along wind force, which is in the same direction as the wind, is the wind dragging force. Due to the natural friction force created by the wind between the building to the building, this force creates a natural resonance on the structure and creates a“sway”oscillation effect on the upper elevations of the building. It is essential that the sway oscillation effect remains within acceptable and controllable limits. The Sway resonance effect also has a significant impact on the comfort needs of people living in the building. In regions where there is a strong effective wind load such as Colorado, the active sway resonance effect creates a damaging effect on the building material when it is effective on the structure for a long time. The long-term exposure of the material to the resonance effect causes intermediate capillary cracks in the inner tissue and affects the strength of the building material. Although skyscraper systems were built with steel tubular systems in the 1950s, active composite systems in which reinforced concrete and steel are used together are preferred in skyscraper structural solutions today. In this sense, the deformation caused by the sway resonance effect in the structure also depends on the structural parameter changes, such as whether the structure was built with a steel system or a composite system. The section built as reinforced concrete in the composite system will be more affected by the damage caused by the sway resonance effect. On the other hand, if primary deformation occurs less in the sections built as steel in the structure, the oscillation and displacement factor of the steel under the displacement force will be higher. Along wind force that creates the sway resonance effect, the secondary force that creates a resultant force with a 90 degree angle is the lateral wind load across wind force. Across wind force works to create a direct destructive effect on the structure. This system, which works in the direction of the lift lifting force, cannot create a harmonious sway effect like along wind force, which works in favor of the friction force, on the contrary, it causes the structural die of the structure to be damaged. The system, which tries to stabilize with the foundations of the building under these two effective forces, and which is based on both lateral and main wind loads, is exposed to the destructive force of the wind under an axial rotation effect called torsional moment effect. For this purpose, the structure needs to protect itself with the help of aerodynamically compatible form and high structures are basically shaped by 6 main aerodynamically effective methods. The first of these is the“taper”crystal sharpening technique, which allows the structure to become sharper as it rises. Taper technique is the most effective aerodynamic resonance technique known, which has also been used in“The Shard London”structure. In the simplest sense, it can be thought of as the process of evolving from a rectangular prism to a crystal pyramid. The second aerodynamic technique is damper systems, which are among the most preferred aerodynamic techniques. Damper systems are systems that work with the + moment – moment principle and work by creating an equal but opposite effect (power force) against the wind load created by the wind. Based on techniques such as testing dampers with different masses and sizes by differentiating metals with different density values such as hydro-elastic damper systems to water-based damper systems or tungsten and iron, damper systems have been used effectively in many buildings today, including the 432 park avenue structure. The setback aerodynamic technique involves the structure having units that are gradually reduced in blocks as they rise. Usually, symmetrical decrements in regular rhythmic units are preferred. In the Openings system, it is aimed to leave different openings on the structure that will create a wind passage corridor. The wind finds its way through these openings and loses its strength before it can create a tipping effect on the structure, and becomes weak and controllable. With Openings, the concept of leaving a gap is either seen as a single and large gap, usually close to the upper peak of the tower, as in the Shanghai Fiannce Center, or a few gaps are left in the form of a rhythmic sequential series of small gaps, creating a porous structure that is presented to the wind.“Twist, rotate”axial rotation systems is another known aerodynamic resonance technique that we are used to seeing in industrial chimney systems. It is formed by rotating the basic base geometry system of the structure on its own coordinate plane with certain angles axially in the z axis direction, with the z coordinate system being the height elevation value. For this purpose, Shanghai Tower is one of the best known twist techniques. The technique of creating corner modifications known as“Modify the edges”means creating a different set of angular changes at the corner points at each floor plan scale of the structure. In the logic of the Rotate technique, it is aimed to lose the wind power by changing the geometry of the wind on the basis of each floor, while the logic of the corner modification technique, which is called modify the edges, is to affect the friction force of the wind with the facade and ensure that it reaches controllable speed values. Prof. Alan Davenport, known as the wind wizard, explains the parameters that enable the wind to be actively effective on the structure, in the wind chain of Alan Davenport, which he designed and named after himself. In this ring, which consists of 5 parameters like the Olympic chain, the first link of the chain is defined as understanding what the character of the wind is in the region where the structure known as“local wind climate”is located. In the second link of the chain, there are criteria for what the building environment is known as“terrain surrounding”. In this context, whether the building as a stand-alone structure is located in the middle of a large space or on the shore of the ocean, or whether it is located in the middle of a dense area within a metropolis, the structure will be driven by the effect of the surrounding buildings on the structure. What the floor heights are, changes the aerodynamics of the building by directly affecting the wind load on the building. In the third ring of the wind chain, there is the aerodynamic response quality, which is defined as the aerodynamic response. The aerodynamic response of the building to the wind is related to basic parameters such as what the building facade material is and what the building form is. What the building facade material is will affect the coefficient of friction, the building form and geometry are also the basis of aerodynamic optimization. Another link is the mechanical response quality as the 4th link of the wind chain. (mechanical response criteria) The mechanical response of the structure and its response to the wind are related to the structural solution system of the structure. When the reinforced concrete system is considered as a steel system or a composite system in which both are used, the response of the building to the wind varies according to the structural construction system. While steel construction systems show a more intense sway oscillation resonance effect against the wind, reinforced concrete construction systems create a more rigid form and create a damper-like effect. In the 5th ring of the wind chain, there are design criteria known as“design criteria”. Here it is important to know what the main design parameters of the building are. For example, in the façade analysis of the building, deciding to what extent the minimal movement between the main frame skeleton system of the building and the façade mulion systems will be allowed, parameters such as flexibility coefficient and stiffness affect the resulting aerodynamic response quality of the building. In order to investigate the aerodynamic response quality as the 3rd basic parameter of the wind chain, the phenomenon known as the artificial intelligence LSTM technique – transfer learning – has been established. With this logic, in order to examine whether a solution algorithm that works in the solution of a known problem can also be useful in the solution of another defined problem, the operation logic of the aircraft wing tip optimization systems, which has been proven to be useful in aircraft wing optimization systems, is examined in the skyscraper building systems and skyscraper construction systems. A hypothesis has been put forward that it should be modified with the aim of creating an efficient aerodynamic form. With this support, it will be examined whether it is possible to reduce the need for damper systems, to reduce dampers, to minimize them, or to completely eliminate the use of dapmer as in The Shard London structure. In the thesis, which will consist of design and simulation stages, 3D visual designs of each skyscraper prototype whose design is considered, were first made in Rhino Grasshopper 3D environment, then mesh (mesh - grid mesh) was provided on the formed 3D visual prototypes and simulation from Matlab & Paraview / ANSYS from Paraview / ANSYS programs. It is aimed to make the decision of the most suitable simulation system according to the density of the point and the solution cell volume (grid mesh volume size) and to reach the conclusion through this appropriate program. In the examples examined in the literature research, the examples made by the Japanese Tanaka Tamura group were seen as the most closely related work with this thesis study, but the fact that the Japanese research group only included structures with symmetrical cross-sections in their prototypes and no studies were made on free plan diagram structures is a critical aspect. On the other hand, in studies on symmetrical plan diagram structures, simple plan diagram structures with full square or completely rectangular cross-sections have been found in the literature. In addition, in the analysis studies conducted in the literature, it has been observed that only the pressure changes on the basis of a single parameter are calculated over Bernoulli differential equations in CFD-based simulations. In the context of the thesis, the solution was provided on the k – omega turbulence model in the Navier Stokes equation, and it was concluded to which prototype the aerodynamically efficient model belonged, based on both pressure, velocity and vorticity calculations in 3 coordinate axes (x, y, z). F14 and F18 model prototypes gave the best matlab CFD simulation results in the trials carried out from F9 to F23 throughout the F series model prototypes. In the F14 model, the speed coefficient remained limited to 1.53, while the Cp pressure coefficient value gave the result of 1.64. In F18, the Cp pressure coefficient remained at 1.66 and the speed coefficient at 1.50. During the F series, the effects of angle and axial rotation were studied on the aircraft wing typology, which is similar to a right triangle modified at 4 different angles (between 50 degrees - 80 degrees), and in the next stage, on the double wing and single wing combination model prototypes in the D and E series. has been trained. While a speed coefficient of 1.70 was achieved in the E24 prototype, a pressure coefficient of 1.64 was achieved, the vortex intensity was obtained in this model (E24 in which single wing and axial rotation techniques were tested) and ¼ of the F18 model with double blade system and axial rotation. The vortex turbulence current intensity, which was measured at 48 units of density in F18, remained limited to 12 units of density in E24. When the X model prototype series was started, this time the coordinate orientation technique was activated in the Rhino 3D design environment and the starting point of the axial rotation coordinate was modified. In the coordinate orientations made from X1 to X7, the speed coefficient value reached 2.80 in the modified prototype design in the northeast direction in the X4 model, creating active turbulence, but the pressure coefficient value remained at 1.60. It is important that the vortex intensity remained at a density value of 10.92 units in the system formed under the K-omega turbulence model and vortex effect. Although the coordinate orientation technique caused an increase in the wind speed, it did not create a dangerous increase in the pressure value, but it provided results similar to the current turbulence intensity values in the D series and E series on the vortex current intensity. In order to improve the studies carried out by the University of Hertfordshire on aircraft wing systems, UH series geometries were obtained based on the skyscraper form of aircraft wing prototypes with 1-2, 1-3 and 1-5 layers parallel plate interface relationship. geometry systems were modeled in 3D and simulated in matlab CFD environment. Against the 1.78 speed coefficient obtained in the UH_1_3 prototype model series, 1.54 Cp pressure coefficient value and 9.22 (unit density) vortex current intensity value ensured that a result was ahead of all test tests performed before the UH series. Moving on to the M wing model series, the M basic, MT and MD model series were designed in 3D in the Rhino 3D environment. Among the prototypes, the details of which are clearly explained in the 4th chapter of the thesis, the M4 prototype remains at a speed coefficient of 1.31 against a pressure coefficient of 1.12 in the M basic model series. it is solid. The speed coefficient for the MT3 model was also obtained as 1.21. When switching to the MD model series, a speed coefficient of 2.11 was obtained against the pressure coefficient of 1.89 in the MD3 prototype. While a pressure coefficient of 1.73 and a speed coefficient of 1.78 were obtained in the simulation results of the GX1 prototype in the GX model series, which was created by modifying a symmetrical airfoil on the basis of pain and length, in the GY model series; A speed coefficient of 1.54 was obtained against a pressure coefficient of 1.65. In the final, two different series were designed using the concepts of openings and setback & taper, and it was aimed to compare the series based on the optimization of the aircraft wing with these two series. For these series, which are called Space and Willis series, 4 model prototypes from each group were produced and these models were solved using the k-omega turbulence model in the ANSYS CFD environment due to the density of the total mesh and number of nodes. As a result, the“Willis 3 – WL3”prototype on the wind tunnel model from which the surrounding buildings were extracted, was characterized as the most aerodynamic skyscraper form design among the 8 model prototypes in the group, with a pressure coefficient of 0.753 Cp. Among the SP1, SP2, SP3 and SP4 model prototypes produced as Space series, on the approach based on creating wind passage corridors by leaving regular rhythmic gaps in openings, the model that gave the most aerodynamically effective form design result was the SP1 model with a pressure coefficient of 0.95 Cp. As a result, the path created by following the steps of the data flow diagram, through the algorithm written in Chapter 3, and the use of the LSTM model for the purpose of transferring the aerodynamic efficient design principles from aerospace engineering to architectural design with a multidisciplinary perspective, and questioning its effectiveness in the Rhino 3D environment. Among all skyscraper prototypes F, D, E, X, UH, Mbasic, MT, MD, GX, GY, SP and WL series, the design that gave the best results was determined to be MT3 with a pressure coefficient of 0.7404 Cp. The design logic of the MT3 model is the form created by modifying the concepts of angle length –“camber angle – chord length”on NASA aircraft wing systems, which constitutes the main hypothesis of the thesis, and it questions the concepts of“wind corridor effect in the structure”and“rising tapering effect”as an operating mechanism, so important. The MT3 model created with the logic of aircraft blade optimization systems and the concept of creating a wind corridor has been proven in the thesis context as a new solution technique produced on artificial intelligence LSTM systems, going beyond the previously known and used openings – setback skyscraper aerodynamic modification techniques.

Benzer Tezler

  1. Derin öğrenme mimari yapısını esas alan hibrit yaklaşım kullanılarak radyolojik görüntülerden Covid-19 teşhisi ve tahmin edilmesi

    Diagnosis and prediction of Covid-19 from radiologicalimages using a hybrid approach based on deep learningarchitectural structure

    SEYFULLAH URUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolVan Yüzüncü Yıl Üniversitesi

    Yapay Zeka ve Robotik Ana Bilim Dalı

    DOÇ. DR. RECEP ÖZDAĞ

  2. Bayes optimizasyon yöntemi kullanılarak evrişimsel sinir ağlarında hiper parametre optimizasyonu

    Hyper parameter optimization in convolutional neural networks using Bayesian optimization method

    ZEYNEP NADİROĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolVan Yüzüncü Yıl Üniversitesi

    Yapay Zeka ve Robotik Ana Bilim Dalı

    DOÇ. DR. MUZAFFER ATEŞ

  3. A medical data mining application covering patients over 90 years old by using the Cart algorithm

    90 yaş üzeri hastalar için Cart algoritması kullanılarak yapılan bir medikal veri madenciliği uygulaması

    FIRAT İSMAİLOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversity of East Anglia

    Bilgisayar Bilimleri Ana Bilim Dalı

    PROF. DR. VİC RAYWARD-SMİTH

  4. Metasezgisel algoritmalar ve derin öğrenme kullanılarak çok kaynaklı görüntü füzyonu

    Multi-source image fusion using metaheuristic algorithms and deep learning

    ASAN IHSAN ABAS ABAS

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NURDAN BAYKAN

  5. Yapay zekâ ve yeni sayı sistemlerinin muhasebe ve finans alanında uygulaması

    Application of artificial intelligence and new number systems in accounting and finance

    MEHMET YILDIZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İşletmeGaziantep Üniversitesi

    İşletme Ana Bilim Dalı

    DOÇ. DR. MURAT KARAHAN