Geri Dön

A novel framework for student performance prediction using optimized ai techniques

Başlık çevirisi mevcut değil.

  1. Tez No: 796164
  2. Yazar: ZAINAB ALI MOHAMMED ALRUBAYE
  3. Danışmanlar: DR. ÖĞR. ÜYESİ AYÇA KURNAZ TÜRKBEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: İngilizce
  9. Üniversite: Altınbaş Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Bilgi Teknolojileri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 63

Özet

In this study, new deep learning-based system developed to estimate the performance of the students depending on number of features that are vary between datasets. The proposed systems applied deep belief network that is deep learning technique used in various fields in classification and regression problems. Proposed method validated using three datasets are obtained from UCI. These datasets represented various stages of students and various information's about students that are used to validated the proposed method. The traditional classifiers presented low results with several evaluation parameters that are calculated to check the performance of the model and try to determine its weakness compared to other traditional techniques. The traditional classifiers presented results vary between 80%-50% which are very low when compared with our proposed system. The proposed system presented remarkable results which are more than 94% for all datasets that are used in this study.

Özet (Çeviri)

In this study, new deep learning-based system developed to estimate the performance of the students depending on number of features that are vary between datasets. The proposed systems applied deep belief network that is deep learning technique used in various fields in classification and regression problems. Proposed method validated using three datasets are obtained from UCI. These datasets represented various stages of students and various information's about students that are used to validated the proposed method. The traditional classifiers presented low results with several evaluation parameters that are calculated to check the performance of the model and try to determine its weakness compared to other traditional techniques. The traditional classifiers presented results vary between 80%-50% which are very low when compared with our proposed system. The proposed system presented remarkable results which are more than 94% for all datasets that are used in this study.

Benzer Tezler

  1. Anticipating robot manipulation failures using knowledge distillation

    Bilgi damıtma ile robot-nesne etkileşim hatalarını tahminleme

    TUĞÇE TEMEL

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. SANEM SARIEL UZER

  2. Retinal damar segmentasyonu için çoklu öğretmen tabanlı bilgi damıtma

    Multi-teacher based knowledge distillation for retinal vessel segmentation

    ABDULLAH EID

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFatih Sultan Mehmet Vakıf Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSA AYDIN

    DR. ÖĞR. ÜYESİ ZEKİ KUŞ

  3. Üniversitelerin idari süreçlerini iyileştirmek için akıllı konuşma aracı geliştirme: Sakarya Üniversitesi vaka çalışması

    Developing an intelligent conversational agent to improve administrative processes at universities: A case study of Sakarya University

    KANAAN AL JAF

    Doktora

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. CEMİL ÖZ

  4. Network optimization problems for disaster mitigation: Network reliability, investment for infrastructure strengthening and emergency facility location

    Afet ile mücadelede ağ optimizasyonu problemleri: Ağ güvenilirliği, altyapı güçlendirmesi için yatırım planlaması ve acil müdahale merkezi yerleştirilmesi

    DİLEK GÜNNEÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2007

    Deprem MühendisliğiKoç Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. FİKRİ KARAESMEN

    PROF. SERPİL SAYIN

    Y.DOÇ. SİBEL SALMAN

  5. Long term competitive advantage effect on company value with fuzzy logic and machine learning applications

    Bulanık mantık ve makine öğrenmesi uygulamaları ile uzun vadeli rekabet avantajının şirket değeri üzerine etkisi

    ZEKERİYA BİLDİK

    Doktora

    İngilizce

    İngilizce

    2024

    İşletmeİstanbul Teknik Üniversitesi

    İşletme Ana Bilim Dalı

    DOÇ. DR. KAYA TOKMAKÇIOĞLU