A novel framework for student performance prediction using optimized ai techniques
Başlık çevirisi mevcut değil.
- Tez No: 796164
- Danışmanlar: DR. ÖĞR. ÜYESİ AYÇA KURNAZ TÜRKBEN
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: Altınbaş Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgi Teknolojileri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 63
Özet
In this study, new deep learning-based system developed to estimate the performance of the students depending on number of features that are vary between datasets. The proposed systems applied deep belief network that is deep learning technique used in various fields in classification and regression problems. Proposed method validated using three datasets are obtained from UCI. These datasets represented various stages of students and various information's about students that are used to validated the proposed method. The traditional classifiers presented low results with several evaluation parameters that are calculated to check the performance of the model and try to determine its weakness compared to other traditional techniques. The traditional classifiers presented results vary between 80%-50% which are very low when compared with our proposed system. The proposed system presented remarkable results which are more than 94% for all datasets that are used in this study.
Özet (Çeviri)
In this study, new deep learning-based system developed to estimate the performance of the students depending on number of features that are vary between datasets. The proposed systems applied deep belief network that is deep learning technique used in various fields in classification and regression problems. Proposed method validated using three datasets are obtained from UCI. These datasets represented various stages of students and various information's about students that are used to validated the proposed method. The traditional classifiers presented low results with several evaluation parameters that are calculated to check the performance of the model and try to determine its weakness compared to other traditional techniques. The traditional classifiers presented results vary between 80%-50% which are very low when compared with our proposed system. The proposed system presented remarkable results which are more than 94% for all datasets that are used in this study.
Benzer Tezler
- Anticipating robot manipulation failures using knowledge distillation
Bilgi damıtma ile robot-nesne etkileşim hatalarını tahminleme
TUĞÇE TEMEL
Yüksek Lisans
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. SANEM SARIEL UZER
- Retinal damar segmentasyonu için çoklu öğretmen tabanlı bilgi damıtma
Multi-teacher based knowledge distillation for retinal vessel segmentation
ABDULLAH EID
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFatih Sultan Mehmet Vakıf ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUSA AYDIN
DR. ÖĞR. ÜYESİ ZEKİ KUŞ
- Üniversitelerin idari süreçlerini iyileştirmek için akıllı konuşma aracı geliştirme: Sakarya Üniversitesi vaka çalışması
Developing an intelligent conversational agent to improve administrative processes at universities: A case study of Sakarya University
KANAAN AL JAF
Doktora
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. CEMİL ÖZ
- Network optimization problems for disaster mitigation: Network reliability, investment for infrastructure strengthening and emergency facility location
Afet ile mücadelede ağ optimizasyonu problemleri: Ağ güvenilirliği, altyapı güçlendirmesi için yatırım planlaması ve acil müdahale merkezi yerleştirilmesi
DİLEK GÜNNEÇ
Yüksek Lisans
İngilizce
2007
Deprem MühendisliğiKoç ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. FİKRİ KARAESMEN
PROF. SERPİL SAYIN
Y.DOÇ. SİBEL SALMAN
- Long term competitive advantage effect on company value with fuzzy logic and machine learning applications
Bulanık mantık ve makine öğrenmesi uygulamaları ile uzun vadeli rekabet avantajının şirket değeri üzerine etkisi
ZEKERİYA BİLDİK
Doktora
İngilizce
2024
İşletmeİstanbul Teknik Üniversitesiİşletme Ana Bilim Dalı
DOÇ. DR. KAYA TOKMAKÇIOĞLU