Tahmin problemleri için regresyon ağacı ve komşuluk tabanlı yöntemler geliştirilmesi: Kalıpçılık sektöründe bir uygulama
Development of regression tree and neighborhood-based methods for prediction problems: An application in the die
- Tez No: 800391
- Danışmanlar: DOÇ. DR. TÜLİN İNKAYA
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 110
Özet
Üretim ile hizmet sistemlerinde gerçekçi ve hızlı karar almak firmalara rekabet avantajı kazandırmaktadır. Bilgi teknolojilerindeki gelişmeler firmaların büyük miktarda veriye kolay erişimini sağlamaktadır. Ancak sayısal değerlerin tahmininin yapılması firmaların karşılaştığı büyük zorluklardandır. Bu çalışmada tahmin problemlerinin çözümü için veri madenciliğine dayalı bir metodoloji önerilmiştir. Önerilen metodolojide ağaç tabanlı yöntemler ve komşuluk tabanlı yöntemler kullanılmıştır. Ağaç tabanlı yöntemler Regresyon Ağacı, Torbalama Regresyon Ağacı ve Güçlendirme Regresyon Ağacıdır. Komşuluk tabanlı yöntemler, K-En Yakın Komşuluk ve Torbalama K- En Yakın Komşuluktur. Tahmin modelleri oluşturulurken veri kümelerindeki nesnelerin yerel aykırı değer faktörlerini, uzaklıklarını ve en yakın komşuluk sıralamasını dikkate alan ağırlıklı tahmin fonksiyonları kullanılmıştır. Aykırı değer analizi çalışması yapılarak tahmin modellerinin doğruluğunun arttırılması hedeflenmiştir. Önerilen yaklaşımların performansı dokuz adet karşılaştırmalı değerlendirme veri kümesi üzerinde test edilmiştir. Yapılan karşılaştırmalarda aykırı değer analizi ile veri önişleme yapıldıktan sonra ağırlıklı tahmin fonksiyonları kullanılarak geliştirilen topluluk yöntemlerin doğruluğu arttırdığı görülmüştür. Ayrıca sac metal kalıp imalatı yapan bir firmada kalıp üretim sürelerinin tahmini için bir vaka analizi çalışması yapılmıştır. Firmanın 2015-2018 yılları arasında üretimini tamamladığı 85 kalıba ait veriler kullanılarak geliştirilen modellerin performansları değerlendirilmiştir. İstatistiksel sonuçlar önerilen yaklaşım ile tahmin doğruluğunun arttığını göstermiştir.
Özet (Çeviri)
Making realistic and fast decisions in production and service systems gives companies a competitive advantage. Developments in information technologies provide companies with easy access to large amounts of data. However, estimating numerical values is one of the major challenges faced by companies. In this study, a methodology based on data mining is proposed for the solution of prediction problems. Tree-based and neighborhood-based methods are used in the proposed methodology. Tree-based methods are Regression Tree, Bagging Regression Tree, and Boosting Regression Tree. Neighborhood-based methods, K-The Nearest Neighborhood and Bagging K-The Nearest Neighborhood. Weighted estimation functions that take into account the local outlier factors, distances and the nearest neighborhood order of the objects in the data sets were used while creating the prediction models. It was aimed to increase the accuracy of the prediction models by performing an outlier analysis study. The performance of the proposed approaches was tested on nine comparative evaluation datasets. In the comparisons, it was observed that the ensemble methods developed by using weighted estimation functions after data preprocessing with outlier analysis increased the accuracy. In addition, a case study was conducted to estimate the die production times in a company that manufactures sheet metal dies. The performances of the developed models were evaluated using the data of 85 dies produced by the company between 2015-2018. Statistical results showed that the accuracy of the prediction increased with the proposed approach.
Benzer Tezler
- Hemşirelerin işten ayrılma niyetlerini etkileyen faktörlerin makine öğrenmesi yaklaşımları ile değerlendirilmesi
Evaluation of the factors affecting nurses' intention to leave their job with machine learning approaches
İREM AKÇAY
Yüksek Lisans
Türkçe
2023
İstatistikYıldız Teknik Üniversitesiİstatistik Ana Bilim Dalı
DOÇ. DR. ÖYKÜM ESRA YİĞİT
- Visual object recognition and detection using deep learning
Derinlikli öğrenme ile görsel nesne tanıma ve tespit etme
BURAK ÇÖREKCİOĞLU
Yüksek Lisans
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. BİLGE GÜNSEL KALYONCU
- Park yapma alışkanlıklarının analiz edilmesi ve uygulama bölgesi için otopark politikaları önerisi
Analysing parking behaviours and suggesting parking policies for the application area
ÇAĞLAR TOZLUOĞLU
Yüksek Lisans
Türkçe
2018
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
YRD. DOÇ. DR. AHMET ÖZGÜR DOĞRU
- Yeni makine öğrenmesi metotları ve ilaç tasarımına uygulamaları
New machine learning algorithms and applications to drug design
MEHMET FATİH AMASYALI
Doktora
Türkçe
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Bölümü
PROF. DR. OKAN ERSOY
PROF. DR. OYA KALIPSIZ
- Bayes toplamsal regresyon ağaçlarının otomobil fiyatları üzerine bir uygulaması
An application of Bayesian additive regression trees on automobile prices
ALEYNA ALTUNTAŞ ARABOĞLU
Yüksek Lisans
Türkçe
2024
İstatistikYıldız Teknik Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. GÜLHAYAT GÖLBAŞI ŞİMŞEK