Sentinel-1 sar görüntülerinin, derin öğrenme teknikleri kullanılarak müsilaj bölgelerinin otomatik olarak tespit edilmesindeki rolü: Marmara denizi Armutlu-Zeytinbağı'nda bir vaka çalışması
The role of sentinel-1 sar images in the automatic detection of mucilage areas using deep learning learning techniques: A case study in the Armutlu-Zeytinbaği of the Marmara sea
- Tez No: 807267
- Danışmanlar: DOÇ. DR. EMRULLAH ACAR
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Batman Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 68
Özet
Doğada bulunan çeşitli nesnelerin tespit edilmesi, türlerin tanımlanması ve bu türlerin keşfedilmesi günümüz dünyasında büyük önem arz etmektedir. Aktif ve pasif görüntüleme sistemleri bu doğrultuda hem ekonomik hem de kolaylık bakımından avantajlı bir konumdadır. Son zamanlarda ülkemizde yaşanan müsilaj olayları hem deniz yaşamı hem de insan hayatı için ciddi riskler oluşturmaktadır. Bu çalışmada obje olarak Mayıs 2021'de meydana gelen müsilaj olayından büyük ölçüde etkilenen bölgelerden birindeki su alanları seçilmiştir. Çalışma alanı olarak Marmara Denizi'nde Armutlu-Zeytinbağı arasındaki bölge seçilmiştir. Musilaj bölgesinden toplam 1300 örnek manuel olarak seçilmiş ve GPS yardımıyla kayıt altına alınmıştır. Seçilen bu örnekler 17 Mayıs–22 Mayıs arası müsilajlı alan, 21 Haziran–22 Haziran arası temiz alan olarak (toplam 2600 örnek) seçildikten sonra Sentinel-1 uydu görüntüleri yardımıyla zaman serileri kullanılarak görüntü analizleri yapılmıştır. Bu görüntü analizleri, Sentinel-1 spektral bant parametreleri (VV-VH) kullanılarak yapılmıştır. VV-VH spektral bant görüntülerinin yansıma değerlerini gösteren sayısal veriler excel ortamına aktarılarak 2 adet özgün veri seti elde edilmiştir. Elde edilen veri setlerine ayrı ayrı derin öğrenme ve makine öğrenmesi modelleri uygulanarak bu müsilajlı bölgesinin otomatik olarak tespit edilmesi amaçlanmıştır. Uygulamalı derin öğrenme (LSTM, CNN) ve makine öğrenmesi modellerimizin (DT, NB, SVM, RF, SGD) başarısının yüksek (84%-100%) olduğu gözlemlenmiştir. Uygulanan derin öğrenme ve makine öğrenmesi yöntemleri ile müsilaj bölgelerinin daha kolay tespit edilmesi ve bu bölgelere erken müdahale edilmesi amaçlanmıştır.
Özet (Çeviri)
Detection of various objects in nature, identification of species and discovery of these species are of great importance in today's world. Active and passive imaging systems are in an advantageous position in this direction, both in terms of economy and convenience. Recently, mucilage events in our country pose serious risks to both marine life and human life. In this study, water areas in one of the regions that were greatly affected by the mucilage event that occurred in May 2021 were selected as the object. The region between Armutlu-Zeytinbağı in the Sea of Marmara was chosen as the study area. A total of 1300 samples from the Musilaj region were manually selected and recorded with the help of GPS. After these selected samples were chosen as mucilage area between 17 May and 22 May and as clean area between 21 June and 22 June (2600 samples in total), image analyzes were made using time series with the help of Sentinel-1 satellite images. These images analyze were performed using Sentinel-1 spectral band parameters (VV-VH). Numerical data showing the reflectance values of VV-VH spectral band images were transferred to excel and 2 original data sets were obtained. It is aimed to automatically detect this mucilage region by applying deep learning and machine learning models separately to the obtained data sets. It has been observed that the success of our applied deep learning (LSTM, CNN) and machine learning models (DT, NB, SVM, RF, SGD) is high (84%-100%). With the applied deep learning and machine learning methods, it is aimed to detect mucilage regions more easily and to intervene in these regions early.
Benzer Tezler
- Derin öğrenme metotları kullanılarak SAR (sentetik açıklıklı radar) görüntülerinden bina tespiti
Building detection from SAR (synthetic aperture radar) images using deep learning methods
RECAİ ALPER EMEK
Yüksek Lisans
Türkçe
2022
Jeodezi ve FotogrametriAkdeniz ÜniversitesiUzaktan Algılama ve Coğrafi Bilgi Sistemleri Ana Bilim Dalı
DOÇ. DR. NUSRET DEMİR
- InSAR ve makine öğrenmesi yöntemleri kullanılarak yüzey hareketlerinin zaman serileri ile modellenmesi: İstanbul Havalimanı örneği
Time series modeling of surface movements using InSAR and machine learning methods: The case study of Istanbul Airport
NUR YAĞMUR
Doktora
Türkçe
2023
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. NEBİYE MUSAOĞLU
PROF. DR. ERDAL ŞAFAK
- Aiding agricultural practices with the exploration of earth observation data via machine learning
Yer gözlem uydu verilerinin tarımsal uygulamalara yardımcı olmak amacıya makine öğrenme algoritmaları ile incelenmesi
MEHMET FURKAN ÇELİK
Doktora
İngilizce
2023
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. ESRA ERTEN
- Analysis and modeling of crustal deformation using InSAR time series along selected active faults within the Africa-Eurasia convergence zone
Afrika-Avrasya sıkışma zonu içerisindeki seçilmiş aktif faylar boyunca meydana gelen kabuk deformasyonunun incelenmesi ve modellenmesi
ESRA ÇETİN
Doktora
İngilizce
2015
Jeoloji Mühendisliğiİstanbul Teknik ÜniversitesiJeoloji Mühendisliği Ana Bilim Dalı
DOÇ. DR. ZİYADİN ÇAKIR
PROF. DR. MUSTAPHA MEGHRAOUI
- Antalya ili Aksu ilçesi sınırları içerisinde arazi kullanımı/arazi örtüsünün belirlenmesi ve ürün deseninde yer alan çok yıllık meyve ağaçlarının SAR (Yapay Açıklıklı Radar) verileri ile izlenmesi
Land use/land cover change detection and crop monitoringof citrus orchards with SAR images in Antalya-Aksu
IŞIN ONUR
Doktora
Türkçe
2021
Astronomi ve Uzay BilimleriAkdeniz ÜniversitesiUzay Bilimleri ve Teknolojisi Ana Bilim Dalı
PROF. DR. NAMIK KEMAL SÖNMEZ