Geri Dön

InSAR ve makine öğrenmesi yöntemleri kullanılarak yüzey hareketlerinin zaman serileri ile modellenmesi: İstanbul Havalimanı örneği

Time series modeling of surface movements using InSAR and machine learning methods: The case study of Istanbul Airport

  1. Tez No: 828572
  2. Yazar: NUR YAĞMUR
  3. Danışmanlar: PROF. DR. NEBİYE MUSAOĞLU, PROF. DR. ERDAL ŞAFAK
  4. Tez Türü: Doktora
  5. Konular: Jeodezi ve Fotogrametri, Geodesy and Photogrammetry
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Geomatik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Geomatik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 187

Özet

Ulaşım trafiğinin önemli bir bölümünü hava taşımacılığı oluşturmaktadır. Özellikle mega kentlerde yer alan ve hem ulusal hem de uluslararası taşımacılığı sağlayan havalimanları önemli bir konuma sahiptir. Yılda milyonlarca insanın yolculuk yapmasına olanak sağlayan bu havalimanlarında yapı sağlığı konusu kritik bir öneme sahip olup, yapı hasarlarının maliyetinin yanı sıra oluşabilecek kazalar sonrası yolcuların can güvenliği de dikkate alınması gereken bir diğer konudur. Bu sebeple, pist ve yapılarda meydana gelebilecek hasarlar sürekli olarak izlenerek, ihtiyaç duyulması halinde yapı iyileştirmeleri gerçekleştirilmelidir. Yapı sağlığı izleme konusunda birçok yersel ölçme yöntemi mevcuttur. GNSS, nivelman, inklonometre vb. sıklıkla kullanılan yersel ölçme yöntemlerine örnek verilebilmektedir. Ancak bu ölçme yöntemleri hassas ölçü sağlasa dahi nokta tabanlı olup, alansal bilgi çıkarımında kullanılması bir hayli güçtür. Ciddi iş yükü gereksiniminin yanı sıra maliyet ve zaman gerektirmektedir. Uzaktan algılama yöntemleri, sürekli periyotlarda uydu görüntüsü sağlama ve geniş kapsama alanı ile bu konuda önemli bir boşluğu doldurmaktadır. Son yıllarda farklı sensörlere sahip birçok uydudan ücretsiz uydu görüntülerinin temin edilebilmesi sayesinde, uydu görüntüsünün mekânsal çözünürlüğüne bağlı olarak farklı detaylarda alansal bilgi çıkarımı sağlanabilmektedir. Yapılarda veya arazi yüzeylerinde meydana gelen yüzey hareketlerinin alansal olarak belirlenmesinde yapay açıklıklı radar (Synthetic Aperture Radar-SAR) uydu görüntüleri sıklıkla kullanılmaktadır. Avrupa Uzay Ajansı'nın Sentinel-1 SAR uydu görüntülerini ücretsiz olarak servis etmesiyle, yapı sağlığı izlemelerinde interferometrik SAR (InSAR) analizleri sıklıkla uygulanmaya başlanmıştır. Yüzey hareketlerinin zaman içerisinde davranışlarını belirlemek ve izlemek için zaman serisi InSAR yöntemleri geliştirilmiştir. Sabit Saçıcı İnterferometri (Persistent Scatterer Interferometry-PSInSAR) ve Küçük Baz Altküme InSAR (Small Baseline Subset InSAR - SBAS) yöntemleri en çok kullanılan yöntemlerdendir. Havalimanlarının uygun arazi eksikliği sebebiyle deniz dolgu alanlarına veya sulak alanların ıslah edilmesiyle elde edilen boş alanlara inşa edilmesi, son yıllarda yüzey hareketlerinin oluşmasına ve bu yüzey hareketlerinin zaman serisi InSAR yöntemleriyle izlenmesi çalışmalarına konu olmuştur. Bu havalimanlarının, Türkiye'de de benzer örnekleri görülmeye başlanmıştır. İstanbul Havalimanı, bulunduğu jeolojik konum ve kullanıma açıldıktan sonra ulaşım trafiğindeki rolü sebebiyle önemli bir yere sahiptir. Terkedilen açık kum ve kömür ocaklarının zaman içerisinde sularla dolmasıyla oluşan sulak alanlar ve rehabilite edilen ağaçlık alanlar üzerine İstanbul Havalimanı inşa edilmiştir. Sulak alanlar ıslah edilmiş ve dolgu malzemeleriyle doldurularak havalimanı inşaatına uygun konuma getirilmiştir. Yüklü miktarda dolgu yapıldığı bilinen havalimanı, zemin oturması ve yoğun dış yükler sebebiyle yüzey hareketlerine karşı hassas durumdadır. Bu sebeple, çalışma alanı olarak İstanbul Havalimanı seçilmiştir. Landsat optik uydu görüntüleri kullanılarak 1984-2020 yılları arasında beşer yıllık periyotlar ile çalışma alanı sınıflandırılmıştır. Sınıflandırma sonrası gerçekleştirilen tematik doğruluk değerlendirmesi sonucunda, sınıflandırmalar yüksek doğruluk değerleri ile gerçekleştirilmiştir. Sınıflandırma sonucunda 1984 yılından 2010 yılına kadar sulak alanların 10 kat arttığı ancak havalimanı inşaatı sonrası %50'sinden fazlasının yok edildiği tespit edilmiştir. Bitki örtüsü yaklaşık olarak %24 azalmış, açık alan sınıfı ise %7 artış göstermiştir. Havalimanında meydana gelen yüzey hareketlerini belirlemek üzere LiCSBAS uygulama paketi ile SBAS yöntemi, SNAP ve StaMPS yazılımları ile PSInSAR yöntemleri uygulanmıştır. Havalimanının kullanıma açıldığı Kasım 2018 ile Eylül 2022 zaman aralığını kapsayan analizlerde, Sentinel-1 ücretsiz SAR görüntüleri kullanılmıştır. Hem yükselen hem de alçalan geometride gerçekleştirilen analiz sonuçlarının birbirine oldukça yakın sonuç verdiği tespit edilmiştir. SBAS ve PSI analiz sonuçlarının birbirini destekleyici sonuç vermesinin yanı sıra mekânsal çözünürlüklerinin farklı olması sebebiyle sonuçlar birbirini tamamlayıcı nitelikte olmuştur. Elde edilen sonuçlar doğrultusunda, B ve C pisti ile terminal binası arasında bulunan ve havalimanı inşaatı sebebiyle ıslah edilen 88,6 ha alana sahip sulak alanın olduğu bölgede çökme eğilimli deformasyon hareketi tespit edilmiştir. Bu bölgeye yakın olan pistlerde (B ve C pisti) ve terminal binasının kuzey kesimlerinde de benzer şekilde çökme eğilimli hareket görülmektedir. A pistinin kuzey kesimlerinde de çökme eğilimli negatif yönde hareket görülürken, terminal binası üzerinde, binanın güney kesimlerinde ve B pistinin güney kesimlerinde kabarma eğilimli pozitif yönde hareket görülmektedir. Kasım 2018-Eylül 2022 süre zarfında C pistinin inşaatına başlanıp tamamlanarak kullanıma açılmasından dolayı, PSI yöntemiyle sabit saçıcı noktaları tespit edilememiştir. Bu sebeple, C pistinin kullanıma açıldığı Temmuz 2020-Eylül 2022 zaman aralığında PSI analizleri tekrarlanmış ve C pistinin inşa edildiği bölgede yer alan ıslah edilmiş ufak sulak alanın üzerinde çökme eğilimli negatif yönde hareket olduğu tespit edilmiştir. Hem alçalan hem yükselen yörüngede elde edilen analiz sonuçları kullanılarak uydu bakış yönünde elde edilen yüzey hareketleri düşey ve yatay bileşenlerine ayrılmıştır. Her iki yörüngede elde edilen sonuçların birbirine benzerlik göstermesi, hareketin düşey yönde olduğunun göstergesidir. Elde edilen düşey bileşen de bu durumu doğrulamaktadır. Yatay bileşenden ise anlamlı sonuçlar elde edilememiştir. Terminal binası üzerinden alınan zaman serisi bileşenlerine ayrılarak trend bileşeni, Meteoroloji Genel Müdürlüğü (MGM)'den alınan sıcaklık verisi ile ilişkilendirilmiş ve yüksek korelasyon elde edilmiştir. Bu durum, terminal binasının çatı malzemesinin genleşmeye meyilli olduğunu göstermiştir. Sayısal yükseklik modelleri (SYM) kullanılarak havalimanı inşaatında kazı ve dolgu yapılan alanlar tespit edilmiştir. Havalimanı inşaatı öncesi topoğrafyayı ifade eden SYM, SRTM verisi ile sağlanmıştır. İnşaat sonrası topoğrafya ise stereo Pleiades görüntüleri ile 2 m mekânsal çözünürlükte oluşturulmuş ve SRTM verisinin mekânsal çözünürlüğü olan 30 m'ye yeniden örneklenmiştir. İki verinin farkının alınmasıyla elde edilen sonuçlar doğrultusunda 88,6 ha alana sahip büyük sulak alana ortalama 60 m dolgu yapıldığı tespit edilmiştir. Ayrıca elde edilen kazı ve dolgu alanlarının deformasyon sonuçlarıyla örtüştüğü tespit edilmiştir. Yüzey hareketlerinin belirlenmesi sonrası, zaman serileriyle tahmin analizleri gerçekleştirilmiştir. Tahmin analizlerinde altı farklı pilot bölge, yapı türü ve zaman serisinin karakteristiğine bağlı olarak belirlenmiştir. Tahmin analizleri geleneksel yöntemler, regresyon tabanlı yöntemler ve derin öğrenme yöntemleriyle gerçekleştirilmiştir. Analiz sonuçlarında, geleneksel yöntemler lineer bir yaklaşım sunarak başarılı bir sonuç vermiştir. Regresyon tabanlı yöntemlerden ise XGBoost Regresyon (XGBR) algoritmasının bütün bölgelerde başarılı sonuç verdiği tespit edilmiştir. Derin öğrenme yöntemlerinde ise Bütünleşik LSTM (Long Short Term Memory-LSTM) yönteminin başarılı sonuç verdiği tespit edilmiştir. Zaman serileri bileşenlerine (trend, mevsimsel etki, artık) ayrılarak, ERA5-Land meteorolojik parametreleri (hava sıcaklığı, toprak sıcaklığı, yağış ve buharlaşma) ile beraber tahmin analizlerine dahil edilmiş ve XGBR ile Bütünleşik LSTM algoritmaları kullanılarak bu özniteliklerin tahmin analizlerine katkısı incelenmiştir. Analiz sonucunda, özniteliklerin eklenmesinin tahmin doğruluğunu arttırdığı tespit edilmiştir. Her bölge için özniteliklerin önem dereceleri her iki yöntem üzerinden de belirlenmiştir. XGBR yöntemi üzerinden SHAP (SHapley Additive exPlanations), permütasyon öznitelik önemi yöntemleri ve algoritmanın kendi ağaç yapısını oluştururken kullandığı önem dereceleri ile, Bütünleşik LSTM yöntemi üzerinden ise permütasyon öznitelik önemi yöntemi ile eklenen yedi özniteliğin önem dereceleri belirlenmiştir. XGBR yöntemi ile elde edilen önem dereceleri bütün yöntemlerde benzerlik göstermiş ve trend ile artık parametrelerinin en önemli öznitelikler arasında yer aldığı belirlenmiştir. Ancak kontrollü ilerlenmediği takdirde bu parametrelerin aşırı öğrenmeye sebebiyet verdiği tespit edilmiştir. Pist üzerinden alınan iki farklı zaman serisinde buharlaşma parametresi öne çıkarken, bina üzerinden alınan zaman serilerinde de hava sıcaklığı parametresinin öne çıktığı belirlenmiştir. Bütünleşik LSTM yöntemi üzerinden permütasyon öznitelik önemi yöntemiyle belirlenen önem derecelerinde, trend bileşeni zaman serilerinin genelinde önemli öznitelikler arasında yer almaktadır. Pist üzerinden alınan zaman serilerinde yağış parametresi öne çıkarken, bina üzerinden alınan çökme ve kabarma zaman serilerinde buharlaşma parametresi öne çıkmaktadır. Terminal binası özelinde incelendiğinde ise toprak sıcaklığının öne çıktığı belirlenmiştir. Elde edilen sonuçlar doğrultusunda tahmin analizlerinde yapı türü, yapı malzemesi ve kullanılan yönteme göre sonuçların değişkenlik gösterdiği söylenebilmektedir. LSTM katmanlarında bulunan seyreltme katmanı ile aşırı öğrenme engellenebilirken, regresyon tabanlı algoritmalarda bu durumun engellenememesi yanıltıcı sonuçlar elde edilmesine sebep olabilmektedir. Geleneksel yöntemlerden ARIMA ve FFT ile XGBR ve Bütünleşik LSTM yöntemleri kullanılarak zaman serilerinin gelecek tahmini analizi gerçekleştirilmiş, elde edilen sonuçlar doğrultusunda FFT ve Bütünleşik LSTM yöntemlerinin benzer bir yaklaşım sunduğu tespit edilmiştir. Tez çalışması, İstanbul Havalimanı üzerinde gerçekleştirilen kapsamlı analizleri içermekte olup, İstanbul Havalimanı gibi büyük ve kritik öneme sahip ulaşım altyapılarında gerçekleştirilecek yapı sağlığı izleme çalışmalarına katkı sağlayacağı düşünülmektedir.

Özet (Çeviri)

Aerial transportation constitutes a significant part of transportation. Especially airports located in megacities and providing both national and international transportation have an important position. At these airports, which allow millions of people to travel every year, the issue of structural health is of critical importance, and the safety of passengers after accidents that may occur, as well as the cost of structural damage, which is another issue that needs to be taken into account. For this reason, damages that may occur on the runway and structures should be monitored permanently and structure rehabilitation, if needed, should be made. There are many terrestrial measurement methods for structural health monitoring. GNSS, leveling, inclinometer, etc. can be given as examples of frequently used terrestrial measurement methods. However, although these measurement methods provide precise measurement, it is very difficult to obtain area-based spatial information with these methods because they are point-based methods. It requires a serious workload as well as cost and time. Remote sensing methods fill an important gap in this regard, by gathering satellite imagery in constant periods and wide coverage. Thanks to the availability of free satellite images from many satellites having different sensors in recent years, spatial information can be extracted in different details depending on the spatial resolution of the satellite image. Synthetic aperture radar (SAR) satellite images are frequently used in the detection of surface movements occurring on structures or land surfaces. With the European Space Agency's free service of Sentinel-1 SAR satellite images, interferometric SAR (InSAR) analyses have been frequently applied in structural health monitoring. Time series InSAR methods have been developed to determine and monitor the behavior of surface movements over time. Persistent Scatterer Interferometry (PSInSAR) and Small Baseline Subset InSAR (SBAS) methods are the most widely used time series InSAR methods. The construction of airports on sea fill areas or on empty areas obtained by reclamation of wetlands due to lack of suitable land has been the subject of studies on the formation of surface movements and the monitoring of these surface movements with time series InSAR methods in recent years. Similar examples of these airports have started to be seen in Turkey as well. Istanbul Airport has an important place due to its geological location and its role in aerial transportation after it was put into use. Istanbul Airport was built on the wetlands and rehabilitated wooded areas, which were formed by the abandoned open sand quarries and coal mines filled with water over time. Wetlands were reclaimed and filled with the material to make them suitable for airport construction. The airport, which is known to be constructed with a large amount of filling, is sensitive to surface movements due to ground settlement and intense external loads. For this reason, Istanbul Airport was chosen as the study area. The study area was classified in five-year periods between 1984 and 2020 using Landsat optical satellite images. As a result of the thematic accuracy evaluation performed after classification, classifications were carried out with high accuracy values. According to the classification results, it was determined that wetlands increased 10 times from 1984 to 2010, but more than 50% of them were destroyed after the airport construction. The vegetation area decreased by approximately 24%, and the bareland class increased by 7% in 36 years. SBAS method using the LiCSBAS application package and PSInSAR method using SNAP and StaMPS softwares were applied to determine the surface movements that occurred at the airport. Sentinel-1 free SAR images were used in the analyzes covering the time period between November 2018 when the airport was opened for use and September 2022. It has been determined that the results of the analysis performed in both ascending and descending geometry give similar results. In addition to the fact that the SBAS and PSI analyses also give similar results, the results were complementary to each other due to their different spatial resolutions. According to the results obtained, surface movement with a tendency to subsidence has been detected in the wetland area with an area of 88.6 ha, which is located between Runway B, Runway C and the terminal building. It has been rehabilitated for the airport construction. A similar movement is observed on the runways close to this area (Runways B and C) and in the northern parts of the terminal building. Movements with a tendency to subsidence are also observed in the northern parts of Runway A, while movements with a tendency to uplift are observed on the terminal building, as well as the southern parts of the building and the southern parts of Runway B. Persistent scatterers could not be determined by the PSI method, since the construction of Runway C was started and opened for use during the period of November 2018-September 2022. For this reason, PSI analyses were repeated in the time period between July 2020 and September 2022, when Runway C was put into use, and it was determined that there was a negative subsidence trend on the small reclaimed wetland in the area where Runway C was built. By using the analysis results obtained in both descending and ascending orbits, the surface movements obtained in the satellite line of sight direction are divided into vertical and horizontal components. The similarity of the results obtained in both orbit geometries indicates that the movement is in the vertical direction that is confirmed by the obtained vertical component. No significant results were obtained from the horizontal component. By decomposing the time series taken from the terminal building to its components, the trend component was found to be highly correlated with the temperature data obtained from the General Directorate of Meteorology. This indicated that the roofing material of the terminal building is prone to expansion. By using digital elevation models (DEM), the areas where excavation and filling were made in the airport construction were determined. DEM, which expresses the topography before the airport construction, is provided with SRTM data. The post-construction topography was created with stereo Pleiades images at 2 m spatial resolution and resampled to 30 m which is the spatial resolution of the SRTM data. Cut and fill regions were determined by taking the difference between the two DEM data. According to the results, it was determined that approximately 60 m of filling was made in the large reclaimed wetland with an area of 88.6 ha. In addition, it has been determined that the identified excavation and filling areas overlap with the deformation results. After the determination of the surface movements, forecasting analyzes were carried out with surface movement time series. Six different pilot regions were determined depending on the structure type and the characteristics of the time series. Forecasting analyzes were performed with traditional methods, regression-based methods and deep learning methods. In the results of the analysis, traditional methods gave a successful result by presenting a linear approach. Among the regression-based methods, it has been determined that the XGBoost Regression (XGBR) algorithm gives successful results in all regions. In deep learning methods, it has been determined that the Stacked LSTM (Long Short Term Memory) method shows successful results. The time series is divided into its components (trend, seasonal effect, residual) by additional decomposition method and included in the forecast analysis together with the ERA5-Land meteorological parameters (air temperature, soil temperature, precipitation and evaporation). The contribution of these features to the forecast analysis was investigated with XGBR and Stacked LSTM algorithms. It has been found that the addition of features to the forecasting analysis increases forecasting accuracy. The importance of the features for each region was determined through both forecasting methods. The importance degrees of seven features were determined over the XGBR method by SHAP, permutation feature importance methods and the importance levels used by the XGBR algorithm while creating its tree structure, and the permutation feature importance method used only for the Stacked LSTM method. The importance degrees obtained by the XGBR method were similar in all methods, and it was determined that the trend and residual parameters were among the most important features. However, these parameters cause overtraining if not controlled. While the evaporation parameter stood out in two different time series taken from the runway, it was determined that the air temperature parameter came to the fore in the time series taken from the building. The trend component is among the most important features of the time series in the importance levels determined by the permutation feature importance method over the Stacked LSTM method. While the precipitation parameter stands out in the time series taken over the runway, the evaporation parameter stands out in the time series taken over the building showing subsidence and uplift characteristics. When the terminal building is examined specifically, it has been found that the soil temperature is prominent. In line with the results obtained, it can be said that the results vary according to the type of building, building material and method used in the forecasting analysis. While overtraining can be prevented with the drop out layer in the LSTM layers, the inability to prevent this situation in regression-based algorithms may cause misleading results. The future forecasting of time series has been performed using ARIMA and FFT traditional methods, XGBR and Stacked LSTM methods. It has been determined that FFT and Stacked LSTM methods offer a similar approach according to the obtained results. The thesis study includes comprehensive surface movement analyses carried out at Istanbul Airport. It provides an example for the structural health monitoring studies to be carried out in large and critical transportation infrastructures such as Istanbul Airport.

Benzer Tezler

  1. Machine learning-enabled stress detection in children using physiological signals during robot assisted therapy

    Çocuklarda makine öğrenmesi ile desteklenmiş robot ile yapılan terapi sırasında fizyolojik sinyallerle stres tespiti

    SEVGİ NUR BİLGİN AKTAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Eğitimi Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

  2. Machine learning techniques for surface electromyography based hand gesture recognition

    Yüzey elektromiyografi temelli el jesti tanıma için makine öğrenmesi teknikleri

    ENGİN KAYA

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TUFAN KUMBASAR

  3. MYO bileklik kullanılarak alınan parmak hareketlerine ait EMG işaretlerinin makine öğrenme yöntemleri ile sınıflandırılması

    Classification using machine learning methods of finger gesture EMG signals acquired with MYO armband

    MUHAMMED ERDİM

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiOndokuz Mayıs Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ CENGİZ TEPE

  4. sEMG ve kamera görüntü verileri kullanarak makine öğrenme temelli robotik el kontrolü

    Robotic hand control based on machine learning using sEMG and camera image data

    İSMAİL MERSİNKAYA

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET REŞİT KAVSAOĞLU

  5. Coğrafi bilgi sistemleri entegreli makine öğrenmesine dayalı toplu taşınmaz değerleme modelinin geliştirilmesi

    Development of mass property valuation model based on geographic information systems integrated machine learning methods

    MUHAMMED OĞUZHAN METE

    Doktora

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. TAHSİN YOMRALIOĞLU