An efficient image dehazing for accurate object detection
Hassas nesne tanıma için etkili bir görüntü sis giderme yöntemi
- Tez No: 814290
- Danışmanlar: DOÇ. DR. MEHMET TÜRKAN, DOÇ. DR. KAYA OĞUZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: İngilizce
- Üniversite: İzmir Ekonomi Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 52
Özet
Hava olayı olarak bilinen“sis”, dış manzarayı görme yeteneğini önemli ölçüde azaltır. Atmosferdeki ışığı emen ve ışığı saçan partiküller bunun başlıca nedenidir. Bu tez çalışması, hassas nesne tanımama için görüntü birleştirme tabanlı bir sis giderme yöntemi sunmaktadır. Birleştirme sürecini uygulamak için, her görüntünün her RGB katmanı için ağırlık haritaları, gama düzeltmesi yapılmış görüntüler kullanılarak hesaplanmaktadır. Daha doğru sonuçlar elde etmek için, füzyon işleminde girdiler için Laplace piramidi ve ağırlık haritaları için Gauss piramidi kombinasyonu kullanılmaktadır. Sisli girdi ve nihai çıktı görüntüleri, nesneleri doğru bir şekilde tespit etmek için YOLOv7 algoritmasında test edilmektedir. Geliştirilen yöntemi diğer yaklaşımlarla karşılaştırmak için kapsamlı testler yapılmıştır. Çeşitli sisli görüntüler üzerine sunulan sonuçlar, önerilen algoritmanın etkinliğini hem görsel hem de nicel olarak değerlendirerek yöntemin literatürdeki birçok öncü yönteme göre üstünlüğü sergilenmektedir.
Özet (Çeviri)
The weather phenomenon known as“haze”significantly reduces the ability to see external scenery. The light-absorbing and light-scattering particulates mainly bring this on in the atmosphere. This thesis suggests a single image fusion-based dehazing method for precise object identification. To apply the fusion process, weight maps are computed for each RGB layer of each image using a collection of gamma-corrected images. To generate more accurate results, the combination of the Laplacian pyramid for inputs and the Gaussian pyramid for weight maps is used in the fusion process. Hazy input and final output images are tested in the YOLOv7 algorithm to detect objects accurately. Comprehensive tests are conducted to compare the proposed method with the other approaches. The experimental results on a range of hazy pictures demonstrate the prior's strength both visually and quantitatively, showcasing the superiority of the developed algorithm over several cutting-edge methods in the literature.
Benzer Tezler
- Early detection of forest fire from video utilizing temporal information
Zamansal bilgiden faydalanarak videodan orman yangınlarının erken tespiti
MERVE TAŞ
Doktora
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAbdullah Gül ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ KASIM TAŞDEMİR
DOÇ. DR. ZAFER AYDIN
- Distortion detection and restoration pipeline for phase contrast microscopy time-series-images
Faz kontrast microskopi zaman serisi goruntulerinde bozulma tespiti ve yeniden yapılandırma algoritması
MAHMUT UÇAR
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİzmir Demokrasi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. DEVRİM ÜNAY
PROF. DR. Uğur TÖREYİN
- Superpixel based efficient image representation for segmentation and classification
Bölütleme ve sınıflandırma için süperpiksel temelli etkin imge simgeleme
HÜSEYİN EMRAH TAŞLI
Doktora
İngilizce
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ABDULLAH AYDIN ALATAN
- Kablosuz multimedya algılayıcı ağlarda verimli görüntü sıkıştırma ve iletim teknikleri
Efficient image compression and transmission techniques in wireless multimedia sensor networks
ALİ DERİNOĞLU
Yüksek Lisans
Türkçe
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMaltepe ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ALİ AKMAN
- An approach for the automatic segmentation of high resolution satellite images into agricultural fields
Yüksek çözünürlüklü uydu görüntülerinin tarımsal parsellere otomatik segmentasyonu için bir yaklaşım
ALIREZA RAHIMZADEGANASL
Yüksek Lisans
İngilizce
2015
Jeodezi ve FotogrametriHacettepe ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA TÜRKER