Privacy-preserving rare disease analysis with fully homomorphic encryption
Tam homomorfik şifreleme ile gizliliği koruyan nadir hastalık analizi
- Tez No: 823474
- Danışmanlar: DR. ÖĞR. ÜYESİ NESLİ ERDOĞMUŞ, DR. METE AKGÜN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: İngilizce
- Üniversite: İzmir Yüksek Teknoloji Enstitüsü
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 62
Özet
Günümüzde nadir hastalıklar dünya genelinde birçok insanı ciddi şekilde etkilemektedir. Araştırmacılar, nadir hastalıkların arkasındaki nedenleri anlamak için çalışmalar yürütür ve bu araştırmalar sonucunda teşhis ve tedavi yöntemleri geliştirilir. Nadir hastalık analizi hastaların genom verileri üzerinde hastalığa neden olan varyantların belirlenmesiyle gerçekleştirilir. Araştırmacıların, nadir hastalıklara neden olan varyantları bulabilmeleri için olabildiğince çok genom verisine erişmesi gerekir. Buna karşılık, hastaların genom verileri bireylerin kimliğinin tespit edilmesinde kullanılabileceği için korunmalıdır. Araştırmacılar, Genel Veri Koruma Tüzüğü (GDPR) gibi düzenlemeler nedeniyle hastaların genom verilerini kolayca paylaşamamaktadır. Bu nedenle, nadir hastalık analizinin birden fazla sağlık kuruluşunun işbirliğine olanak sağlarken hastaların gizliliğini de koruyan güvenli bir şekilde yapılması gerekmektedir. Bu kapsamda nadir hastalık analizi için gizliliği koruyan ortak çalışmaya dayalı bir sistem sunulmalıdır. Bu tez çalışması, gizliliği koruyan ortak çalışmaya dayalı nadir hastalık analizi için, şifrelenmiş veriler üzerinde sınırsız sayıda işlemin gerçekleştirilmesine olanak sağlayan bir yöntem olan tam homomorfik şifrelemenin kullanımına odaklanmaktadır. Hastalığa neden olan varyantları belirleyerek şifrelenmiş genom verileri üzerinde nadir hastalık analizi yapmak için boolean devre yöntemi ve tamsayı aritmetik yöntemi olmak üzere iki farklı yöntem uygulanmıştır, ve önerilen yöntemlerin verimliliğini değerlendirmek için çeşitli deneyler gerçekleştirilmiştir.
Özet (Çeviri)
Rare diseases severely affect many people across the world at the present time. Researchers conduct studies to understand the reasons behind rare diseases and as a result of this research, diagnosis, and treatment methods are developed. Rare disease analysis is performed to specify the disease-causing variants on the genome data of patients. The researchers need access to as much genome data as possible to find causing variants of rare diseases. On the other hand, the genome data of patients should be protected because it can be used to detect the identity of individuals. The researchers are not able to share the genome data of patients easily because of regulations such as General Data Protection Regulation (GDPR). For this reason, rare disease analysis should be performed in a secure way that protects the privacy of patients while enabling the collaboration of multiple medical institutions. In this context, a privacy-preserving collaborative system for rare disease analysis should be provided. This thesis study focuses on the utilization of fully homomorphic encryption, a method that enables unlimited number of operations to be performed on encrypted data, for privacy-preserving collaborative rare disease analysis. Two different methods, the boolean circuit method, and the integer arithmetic method, are implemented to perform rare disease analysis on the encrypted genome data to find disease-causing variants, and various experiments are performed to assess the efficiency of the proposed methods.
Benzer Tezler
- Privacy-preserving XGBoost inference with homomorphic encryption
Homomorfik şifreleme ile gizlilik korumalı XGBoost tahmin algoritması
ŞEYMA SELCAN MAĞARA
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. DR. ERKAY SAVAŞ
- Privacy preserving data analysis for information systems
Bilgi sistemleri için gizliliği koruyan veri analizi
BARIŞ YILDIZ
Doktora
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. RECEP ALP KUT
- Blockchain in healthcare: Smart contracts to improve dental healthcare for children in mixed dentition period
Sağlıkta blockchaın: Karma diş dönemindeki çocuklar için diş sağlığını iyileştirmeye yönelik akıllı sözleşmeler
WILDAN MOHAMMED ARABY AL RUBAYE
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. SEFER KURNAZ
- Privacy-preserving data sharing and utilization between entities
Kurumlararası gizliliği koruyan veri paylaşımı
DİDEM DEMİRAĞ
Yüksek Lisans
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ERMAN AYDAY
- Privacy preserving data publishing with multiple sensitive attributes
Privacy preserving data publishing with multiple sensitive attributes
AHMED ABDALAL
Doktora
İngilizce
2012
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. YÜCEL SAYGIN
YRD. DOÇ. DR. MEHMET ERCAN NERGİZ