Geri Dön

COVID-19 diagnosis with artificial intelligence algorithms

Başlık çevirisi mevcut değil.

  1. Tez No: 826129
  2. Yazar: LUJAIN QASIM NASER LAMI
  3. Danışmanlar: DR. ÖĞR. ÜYESİ MESUT ÇEVİK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: İngilizce
  9. Üniversite: Altınbaş Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 79

Özet

When the covid-19 virus initially spread globally in 2019, As a result, numerous people passed away. Due to this sickness, medical staff members are busier than ever. For reducing this load, computer-aided diagnostic tools and machine learning will assist in some ways. Any scientific investigation into this disease can help it be eliminated rapidly. In our study, we utilized the Covid-19 dataset which is publicly accessible (14486 cases) from the Kaggle website. Training and test data categories were created from the dataset, using 80% of the data for training and 20% for testing. This research has two main stages: First, we extract Visual Geometry Group (VGG16) features from the dataset, then based on these extracted features, five machine learning algorithms were employed for classification (k-nearest neighbor (KNN), random forest (RF), extreme gradient boosting (XGBoost), decision trees (DT), and support vector machine (SVM)). Second, we extract gray-level co-occurrence matrix (GLCM) features from the dataset. Then, we applied the same five machine learning algorithms (DT, RF, KNN, XGBoost, and SVM) for classification based on these extracted features. Performance metrics were examined utilizing a confusion matrix, accuracy, recall, and precision together with the F1 score.Regarding classification accuracy, the Support vector machine algorithm and VGG16 were the classification techniques that excel at 98.22% accuracy and achieve the impressively rapid and best result.

Özet (Çeviri)

When the covid-19 virus initially spread globally in 2019, As a result, numerous people passed away. Due to this sickness, medical staff members are busier than ever. For reducing this load, computer-aided diagnostic tools and machine learning will assist in some ways. Any scientific investigation into this disease can help it be eliminated rapidly. In our study, we utilized the Covid-19 dataset which is publicly accessible (14486 cases) from the Kaggle website. Training and test data categories were created from the dataset, using 80% of the data for training and 20% for testing. This research has two main stages: First, we extract Visual Geometry Group (VGG16) features from the dataset, then based on these extracted features, five machine learning algorithms were employed for classification (k-nearest neighbor (KNN), random forest (RF), extreme gradient boosting (XGBoost), decision trees (DT), and support vector machine (SVM)). Second, we extract gray-level co-occurrence matrix (GLCM) features from the dataset. Then, we applied the same five machine learning algorithms (DT, RF, KNN, XGBoost, and SVM) for classification based on these extracted features. Performance metrics were examined utilizing a confusion matrix, accuracy, recall, and precision together with the F1 score.Regarding classification accuracy, the Support vector machine algorithm and VGG16 were the classification techniques that excel at 98.22% accuracy and achieve the impressively rapid and best result.

Benzer Tezler

  1. Yapay zeka teknikleri ile COVID-19 hastalık tahmini

    COVID-19 disease prediction with artificial intelligence techniques

    ABDULLAH TÜRKER TOKU

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ FERHAT ATASOY

  2. Enhance the performance of preprocessing techniques by using artificial intelligence algorithms

    Yapay zeka algoritmaları kullanarak ön işleme tekniklerinin performansını artırın

    HUMAM QUTAIBA ABDULRAHMAN AL-DOORI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ABDULLAHİ ABDUL IBRAHIM

  3. Yapay zeka tabanlı akciğer röntgen görüntülerinden covıd-19 tespiti

    Covid-19 detection from artificial intelligence based lung x-ray images

    ÖZGÜR KART

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. FATİH BAŞÇİFTÇİ

  4. Sunucu tabanlı yapay zekalı COVID-19 belirtileri analizi yapan robot

    Server-based artificial intelligence robot analyzing COVID-19 symptoms

    UĞUR YILDIRIM

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAfyon Kocatepe Üniversitesi

    Bilgisayar Ana Bilim Dalı

    PROF. DR. ÖMER DEPERLİOĞLU

  5. Deep feature transfer from deep learning models into machine learning algorithms to classify COVID-19 from chest X-ray images

    Göğüs röntgeni görüntülerinden COVID-19 sınıflandırması yapmak amacıyla derin öğrenme modellerinden makine öğrenmesi algoritmalarına derin öznitelik aktarımı

    OZAN GÜLDALİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Matematikİstanbul Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ GÜL İNAN