A comparative study of machine learning classification alorithms on acceleration data
Hızlanma verileri üzerinde makine eğitimi sınıflandırma aloritmalarının karşılaştırmalı bir çalışması
- Tez No: 840875
- Danışmanlar: Assist. Prof. Dr. NURİ BİNGÖL, DR. ÖĞR. ÜYESİ FAYYAZ AHMAD
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: İngilizce
- Üniversite: Üsküdar Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 130
Özet
Human activity recognition using machine learning has gained significant attention in recent years. The application of machine learning techniques to recognize human activities by analyzing acceleration data is focused on in this thesis research. The motivation for this research arises from the increasing popularity of wristband gadgets, mobile applications, smartwatches, etc., which collect gyroscope, gravity, rotation, and acceleration data, as well as the advancements in machine learning. Python and MATLAB® code was used in this research to extract 66 features from raw acceleration data associated with six human activities: walking, standing, sitting, upstairs, downstairs, and jogging. Four classification algorithms were implemented: Decision Tree, Support Vector Machine (SVM), Naïve Bayes, and K Nearest Neighbors (KNN). Classification models capable of accurately predicting various human activities were created using these algorithms. Across the different algorithms, the accuracy levels of the classification models varied. An accuracy of 87.4% was achieved by the Decision Tree algorithm, 90.9% by Naïve Bayes, 95.3% by Support Vector Machine, and 88.0% by KNN. Several metrics, including accuracy, precision, recall, and F1-score, were used to evaluate the performance of each algorithm. The numerical experimental results demonstrate that each algorithm has its strengths and limitations in recognizing human activities. Among these algorithms, the Support Vector Machine algorithm demonstrated the highest accuracy of 95.3%. The effectiveness of machine learning techniques in human activity recognition is showcased in this study, highlighting the superiority of the Support Vector Machine algorithm in accurately identifying human activities using raw data.
Özet (Çeviri)
Human activity recognition using machine learning has gained significant attention in recent years. The application of machine learning techniques to recognize human activities by analyzing acceleration data is focused on in this thesis research. The motivation for this research arises from the increasing popularity of wristband gadgets, mobile applications, smartwatches, etc., which collect gyroscope, gravity, rotation, and acceleration data, as well as the advancements in machine learning. Python and MATLAB® code was used in this research to extract 66 features from raw acceleration data associated with six human activities: walking, standing, sitting, upstairs, downstairs, and jogging. Four classification algorithms were implemented: Decision Tree, Support Vector Machine (SVM), Naïve Bayes, and K Nearest Neighbors (KNN). Classification models capable of accurately predicting various human activities were created using these algorithms. Across the different algorithms, the accuracy levels of the classification models varied. An accuracy of 87.4% was achieved by the Decision Tree algorithm, 90.9% by Naïve Bayes, 95.3% by Support Vector Machine, and 88.0% by KNN. Several metrics, including accuracy, precision, recall, and F1-score, were used to evaluate the performance of each algorithm. The numerical experimental results demonstrate that each algorithm has its strengths and limitations in recognizing human activities. Among these algorithms, the Support Vector Machine algorithm demonstrated the highest accuracy of 95.3%. The effectiveness of machine learning techniques in human activity recognition is showcased in this study, highlighting the superiority of the Support Vector Machine algorithm in accurately identifying human activities using raw data.
Benzer Tezler
- Onkolojik amaçlı pozitron emisyon tomografisi/bilgisayarlı tomografi yapılan hastalarda, makine öğrenimi yöntemiyle malign/benign lezyonların ayırıcı tanısı
Differential diagnosis of malign/benign lesions using machine learning method in patients who had positron emission tomography/computed tomography for oncological purposes
AYKUT HASBEK
Yüksek Lisans
Türkçe
2024
BiyomühendislikSivas Cumhuriyet ÜniversitesiBiyomühendislik Ana Bilim Dalı
PROF. DR. MEHTAP ERŞAN
DR. ÖĞR. ÜYESİ EMRE GÖRGÜN
- A comparative study of classification algorithms for sentiment analysis of COVID-19 vaccine opinions using machine learning
Makine öğrenmeyi kullanarak COVID-19 aşı görüşlerinin duyarlılık analizi için sınıflandırma algoritmalarının karşılaştırmalı bir çalışması
DILBER S ZAINULABDEEN ZAINULABDEEN
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MESUT ÇEVİK
- Comparison of machine learning algorithms on consumer credit classification
Tüketici kredilerinin sınıflandırması üzerinde makineöğrenimi algoritmalarının karşılaştırması
OĞUZ KOÇ
Yüksek Lisans
İngilizce
2019
İstatistikOrta Doğu Teknik ÜniversitesiFinansal Matematik Ana Bilim Dalı
PROF. DR. AYŞE SEVTAP KESTEL
PROF. DR. ÖMÜR UĞUR
- A comparative study of deep learning techniques in concrete crack detection: Convolutional neural networks and logistic regression
Beton çatlağı tahminde derin öğrenme yöntemlerinin kıyaslamalı bir çalışması: Evrişimsel sinir ağları ve lojistik regresyon
AZHI YASSIN RASUL
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Kültür ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. FADİME YÜKSEKTEPE
- Destek vektör makineleri yöntemi ile arazi kullanımı sınıflandırılmasında kernel fonksiyonlarına ait karşılaştırmalı parametre duyarlık analizi: Rapideye ve spot örneği
Comparative sensitivity analysis of kernel parameters for support vector machines on land use classification: A case study of rapideye and spot
MUSTAFA ÜSTÜNER
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiHarita Mühendisliği Ana Bilim Dalı
DOÇ. DR. FÜSUN BALIK ŞANLI