Machine learning modelling of stall on airfoils
Başlık çevirisi mevcut değil.
- Tez No: 841465
- Danışmanlar: Belirtilmemiş.
- Tez Türü: Yüksek Lisans
- Konular: Makine Mühendisliği, Mechanical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: Imperial College London
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 64
Özet
Research and developments have been growing for wind power industry in the form of onshore and offshore wind turbines as they provide cost-effective, clean, and sustainable energy. The increase in the need of clean and sustainable energy source and competition in renewable energy has created a need of a more efficient design for wind turbines that is capable of withstanding high loads while avoiding stability problems of the blades like stall. CFD analysis require many simulations and are mostly time consuming when the design space of possible airfoil geometries is considered. On the other hand, the recent growth of data driven methods and applications has led to advances in many scientific fields. Therefore, machine learning applications can be used together with a data set from a highfidelity data from CFD to build a surrogate model. However, more conventional methods require large data set to make the machine learning model learn the pattern and usually struggles to foresee the results for the unseen data. This project aims to combine the methods on CFD simulations with machine learning applications to create a predictive model that determines the stall of an airfoil by using novel machine learning techniques. In this technique, physically lower-fidelity solutions are being injected into the machine learning model to make the most efficient output from the model predictions with a given amount of data. To provide the data set of different airfoil geometries covering corresponding stall angles, a CFD solver has been utilised. Artificial neural networks were trained, and physics guidance is provided by a vortex panel method. It has been shown that when the neural networks are constrained by physics input, data is used more efficiently, and predictions are more accurate to the physical situations in addition to the fact that the models identify the pattern using data, making the concept of finding the stall quicker which would otherwise take quite long times when solely CFD simulations were performed. Therefore, it is more reliable to depend on the predictions from physics guided neural networks which provided stall predictions up to 5% error whereas pure neural networks model provides 15% error when both models have the same structure.
Özet (Çeviri)
Özet çevirisi mevcut değil.
Benzer Tezler
- Solving Navier Stokes equations with physics informed neural network for calculation of aerodynamic forces
Aerodinamik kuvvetleri hesaplamak için Navier-Stokes denklemlerinin fizik bilgili nöral ağ ile çözümü
SILA AKPINAR
Yüksek Lisans
İngilizce
2022
Mekatronik MühendisliğiSabancı ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. SERHAT YEŞİLYURT
- Data driven optimization of structural and dynamical properties of parts manufactured via selective laser melting process using machine learning and finite element analysis methods
Seçici lazer ergitme prosesi ile üretilen parçaların yapısal ve dinamik özelliklerinin makine öğrenmesi ve sonlu elemanlar analizi yöntemleri kullanılarak veri odaklı optimizasyonu
CAN BARIŞ TOPRAK
Doktora
İngilizce
2024
Makine MühendisliğiHacettepe ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. CAN ULAŞ DOĞRUER
- Yapay sinir ağları ile ulaştırma taleplerinin modellenmesi
Başlık çevirisi yok
YUSUF KAAN DEMİR
Yüksek Lisans
Türkçe
1997
İnşaat Mühendisliğiİstanbul Teknik ÜniversitesiUlaştırma Ana Bilim Dalı
PROF. DR. HALUK GERÇEK
- Accelerating molecular docking using machine learning methods
Kenetleme hesaplarının makine öğrenme metotları ile hızlandırılması
ABDULSALAM YAZID BANDE
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
Assist. Prof. Dr. SEFER BADAY
- Rastgele yönlendirilmiş karbon nanotüp takviyeli kompozitlerin modellenmesi
Modelling of randomly oriented carbon nanotube reinforced composites
EMRE KÖROĞLU
Doktora
Türkçe
2022
Uçak Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
PROF. DR. HALİT SÜLEYMAN TÜRKMEN