A comparative study of arima and LSTM for two-days ahead forecasting of electricity demand in İzmir-Manisa region in Turkey
Türkiye İzmir-Manisa bölgesinde elektrik talebinin iki gün sonraki tahmini için arıma ve LSTM karşılaştırılması
- Tez No: 860761
- Danışmanlar: DR. ÖĞR. ÜYESİ GÖKHAN DEMİRKIRAN
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Enerji, İstatistik, Electrical and Electronics Engineering, Energy, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2024
- Dil: İngilizce
- Üniversite: Yaşar Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 43
Özet
Elektrik talebini tahmin etmek, enerji altyapılarının yönetimi ve enerji piyasalarından enerji satın alma açısından hayati bir hale gelmiştir. Bu araştırma, Gdz Elektrik Dağıtım şirketinden elde edilen gerçek zaman serisi verilerini kullanarak İzmir ve Manisa bölgelerindeki elektrik talebini tahmin etmeye odaklanmaktadır. Veri seti, Ocak 2020 (COVID sonrası) ile Aralık 2022 tarihleri arasına uzanan günlük toplam enerji tüketim zaman serisini içermektedir. Geleneksel istatistiksel teknik olan ARIMA'yı kullanarak ve performansını Uzun Kısa Vadeli Hafıza ağları (LSTM) ile karşılaştırarak, çalışma hiparaparametrelerin arama alanı üzerinde tahmin doğruluğunu incelemektedir. Sonuçlar, ARIMA'nın verideki açık desenler nedeniyle özellikle hesaplama yoğun LSTM'ye meydan okuyabileceğini göstermektedir. Mevsimsel göstergeleri kullanarak veriyi detrend etmek, ARIMA'nın performansını artırır ve istatistiksel olarak eğilimli uzmanlara bilgi sağlayabilir.
Özet (Çeviri)
Predicting electricity demand has become crucial for management of energy infrastructures and purchasing energy from energy markets. This research focus on on predicting the electric demand in Izmir and Manisa regions, using actual time series data from the Gdz Electric Distribution company. The dataset encompasses daily total energy consumption time series dating from January 2020 (post-COVID) to December 2022. Employing the conventional statistical technique ARIMA and comparing its performance with Long Short-Term Memory networks (LSTM), the study examines forecasting accuracy over a search space of hyperparameters. Results showcases that ARIMA can challenge computationally-intensive LSTM especially due to the evident patterns in data. Detrending the data using seasonal indicators further increases the performance of ARIMA and can provide insights to the statistically-inclined experts.
Benzer Tezler
- Predictive error compensated wavelet neural networks framework for time series prediction
Zaman serisi tahmini için hata tazminli dalgacık dönüşümlü sinir ağları çerçeve yazılımı
SERKAN MACİT
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BURAK BERK ÜSTÜNDAĞ
- Machine learning based multi-scale joint forecasting-scheduling for the internet of things
Nesnelerin interneti için makine öğrenmesi tabanlı çok ölçekli bütünleşik tahminleme-çizelgeleme
MERT NAKIP
Yüksek Lisans
İngilizce
2020
Elektrik ve Elektronik MühendisliğiYaşar ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. VOLKAN RODOPLU
PROF. DR. CÜNEYT GÜZELİŞ
- A comparative study of classical and machine learning approaches for time series forecasting: An empirical analysis on exports in turkey
Zaman serilerinin tahminlenmesinde klasik ve makine öğrenmesi yaklaşımlarına yönelik karşılaştırmalı bir çalışma: Türkiye'nin ihracatı üzerine deneysel bir analiz
EDA GÜNEL
Yüksek Lisans
İngilizce
2020
EkonometriOrta Doğu Teknik Üniversitesiİstatistik Ana Bilim Dalı
DOÇ. DR. CEYLAN YOZGATLIGİL
- COVID-19 ölüm ve vaka sayılarının arıma ve derin öğrenme modelleri ile öngörüsü
Prediction of COVID-19 death and case number using arima and deep learning models
BÜŞRA ÇETİN
Yüksek Lisans
Türkçe
2024
İstatistikMuğla Sıtkı Koçman Üniversitesiİstatistik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NİDA GÖKÇE NARİN
- Zaman serileri tahminleme algoritmalarının karşılaştırmalı uygulaması
Comparative implementation of time series forecasting algorithms
HAKAN AKÇAY
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-CerrahpaşaBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. DERYA YILTAŞ KAPLAN