Geri Dön

Mesken elektrik aboneleri için enerji yönetimi sistemi kullanımı

Utilization of energy management systems for residential electricity consumers

  1. Tez No: 871851
  2. Yazar: HÜSNÜ ALAY
  3. Danışmanlar: PROF. DR. BELGİN TÜRKAY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 161

Özet

Çağımızda elektrik tüm toplumlar için önemli bir enerji kaynağıdır. Hayatımızın neredeyse her alanında bu enerjiye ihtiyaç duymaktayız. Bu denli ihtiyaç duyduğumuz enerji kaynağı günümüzde fosil yakıtlardan, yenilebilir enerji kaynaklarından ve nükleer enerjiden üretilebilmektedir. Fosil yakıtların kullanım oranı bu kaynaklar içerisinde dünya üzerinde %87'dir. Fosil yakıtların sınırlı olması, enerji maliyetleri ve kullanımı sonrası ortaya çıkan gazların çevreye vermiş olduğu zararlar düşünüldüğünde artan enerji talebini karşılamak adına ülkeler yenilenebilir enerji kaynaklarından enerji kullanımına ve enerji kullanımında verimliliğe yönelik çalışmalarını hızlandırmaktalar. Bu hususta mesken elektrik kullanıcılarının enerji tüketimleri, maliyetlerin azaltılması ve enerji kullanımında verimlilik konuları ön plana çıkmaktadır. Dünya Ekonomik Forumu'na (DEF) göre, mesken ve ticari binalar küresel enerji tüketiminin %40'ından ve sera gazı emisyonlarının %33'ünden sorumludur. Türkiye'de de mesken elektrik kullanıcılarının tüketmiş olduğu elektrik, toplam tüketimin %29'unu oluşturmaktadır. Bu sebeple yenilebilir enerji kaynakları ve enerjinin verimli kullanılması mesken kullanıcılar için önem arz etmektedir. Bu noktada Enerji Yönetimi Sistemi (EYS) karşımıza çıkmaktadır. Mesken kullanıcılara dahil edilecek yenilebilir enerji kaynakları ve enerji depolama sistemleri (EDS) sayesinde temiz ve sürdürebilir enerji üretimi sağlanırken EYS sayesinde kullanıcının optimum verimle enerji kullanması sağlanacaktır. Bu sayede hem mesken kullanıcıların elektrik faturaları minimize edilecek hem de temiz ve devamlı enerji kullanımını mümkün kılacaktır. Belirtilen amaçlar doğrultusunda bu tez çalışmasında Türkiye'nin 7 farklı bölgesinde yer alan 14 ilde üç farklı yük profiline sahip mesken kullanıcı türü için üç analiz yapılmıştır. İlk olarak, PVsyst 7.4 programı kullanılarak çatı Güneş Enerjisi Sistemi (GES) tasarımı yapılmış ve tüm illerde aynı model kullanılarak bir yıllık süreçte aylık olarak enerji üretim tahminlemesi gerçekleştirilmiştir. İkinci olarak, mesken kullanıcıların aylık elektrik faturalarının düşürülmesi amaçlanarak Excel ortamında maliyet fonksiyonu çözdürülerek EYS tasarımı yapılmış ve Matlab programında uygulanmıştır. Bu tasarımlar üç mesken kullanıcı içinde (i) doğrudan şebekeye bağlı olduğu, (ii) çatı GES ile birlikte şebekeye bağlı olduğu, (iii) çatı GES ve EDS kullanılarak şebekeye bağlı olduğu senaryolarda 14 ilde aylık elektrik faturaları ve aylık net para akışları hesaplanmıştır. Son olarak ise her il için çatı GES ve EDS sisteminin ekonomik analizleri gerçekleştirilmiştir. Elde edilen sonuçlara göre ilk olarak çatı GES üretim verileri incelendiğinde, en fazla üretimin Antalya ilinde gerçekleştiği görülmektedir. Tüm sonuçlara göre haritada kuzeyden güneye gidildikçe üretim artmaktadır. İkinci olarak senaryolarda illere ve mesken kullanıcılara göre elektrik faturaları incelendiğinde; tüm kullanıcılar için çatı GES ile birlikte faturalarında iyileşmeler görülmektedir. Kullanıcıya EDS dahil edildiğinde ise şebekeye satmış olduğu elektrikten elde ettiği kar artmaktadır. Mesken kullanıcı profilleri sonuçları incelendiğinde ise literatürde yer alan çalışmalarla da karşılaştırıldığında EYS, tanımlanan amaç doğrultusunda belirtilen kısıtlarla birlikte doğru çalıştığı ortaya çıkmıştır. Son olarak senaryolar da ekonomik analizler incelendiğinde; sadece çatı GES bağlı senaryoda PI değerleri Artvin, İstanbul ve Kastamonu illeri 1 değerinin altında sonuçlar vermekte ve uygulanabilirlik anlamında geride kalmaktadır. Uygulanabilirliği en yüksek il ise 1.31 değeri ile Antalya olarak karşımıza çıkmaktadır. Çatı GES ve EDS bağlı senaryoda değerler incelendiğinde PI değerleri 1 değerinin üzerinde hesaplanan ilimiz bulunmamaktadır. Sonuç olarak, EYS sistemi kullanımıyla mesken kullanıcılara çatı GES ve EDS dahil edilerek aylık elektrik faturalarında azalmaya hatta üretilen enerjinin şebekeye satılmasıyla mesken kullanıcılar karlı duruma geçmektedir. Ancak EDS dahil edildiği durumda artan maliyetler sebebiyle kullanıcının geri dönüş süreleri artmaktadır. Bu çalışma yüksek elektrik tüketimi olan veya çatı GES kurulumu imkanı olan elektrik aboneleri için bir örnek oluşturmaktadır. Elde edilen sonuçlara göre EYS'yle birlikte mesken kullanıcılara çatı GES sistemi kurulumunun yapılması önerilmektedir. Güneş enerji kurumlarının yaygınlaştırılarak sürdürülebilir bir dünya için verimli enerji kullanıma katkı sağlanmalıdır. EDS için ise maliyetlerin azaltılması ve kullanım ömürlerinin arttırılması gerekmektedir Böylelikle mesken kullanıcılarda kullanımı daha da arttırılabilir. Ülkeler, GES kurulması için aboneleri teşvik etmeli ve EDS kullanımlarının yaygınlaştırılması için imkan sunmalıdır.

Özet (Çeviri)

Electricity stands as an indispensable resource within contemporary society, representing a cornerstone of our daily lives, essential for sustaining virtually every aspect of modern living. However, the simultaneous challenges of curbing electricity production and consumption costs while mitigating environmental pollution loom large as pressing concerns across societies globally. Moreover, the imperative for energy becomes increasingly pronounced with each passing day, assuming paramount importance in the agenda of policymakers and stakeholders alike. Presently, numerous nations grapple with a burgeoning crisis in fulfilling the burgeoning demands for electricity among their populace. Energy resources are categorized as either non-renewable (fossil fuels) or renewable (solar, wind, geothermal). The usage rate of fossil fuels among these resources is 87% in the world. Fossil fuels, commonly used in most electric energy production systems, release emission gases (such as {NO}_x, {SO}_2, {CO}_2) into the atmosphere when utilized in thermal generation units. The heightened greenhouse gas concentration resulting from these emissions, along with other factors, leads to the greenhouse effect. This phenomenon triggers various global challenges, including global warming, drought, climate change, and soil degradation. These adverse conditions pose significant threats to life on Earth, underscoring the critical importance of regulating emission gas density. Given the finite nature of conventional fuels, coupled with their escalating energy costs and the environmental repercussions stemming from post-combustion emissions, nations have expedited their endeavors towards harnessing renewable energy sources and optimizing energy efficiency. This proactive approach is aimed at addressing the mounting energy demands while simultaneously mitigating environmental degradation associated with traditional energy production methods. Within this framework, the energy consumption patterns of residential electricity consumers emerge as a focal point, underscoring the critical need to address both cost reduction and efficiency enhancement measures. Citing data from the World Economic Forum (WEF), it is evident that residential and commercial buildings together constitute a significant portion, accounting for 40% of global energy consumption and a substantial 33% of greenhouse gas emissions worldwide. Delving into the specifics of Turkey's energy landscape, residential electricity consumers stand out, contributing to 29% of the nation's overall energy consumption. This data underscores the pivotal role that residential energy consumption plays in the broader context of both national and global energy usage patterns, thereby emphasizing the urgency for targeted interventions aimed at promoting energy efficiency and sustainability within this sector. At this juncture, the Energy Management System (EMS) takes center stage. EMS is a sophisticated software-based platform meticulously engineered to monitor, regulate, and optimize energy utilization. Its overarching objectives encompass enhancing energy efficiency, curbing energy expenditures, and mitigating environmental footprints. Moreover, EMS plays a pivotal role in fostering sustainability initiatives and realizing cost-saving endeavors by facilitating judicious management of energy consumption patterns. The core objective of EMS revolves around ensuring the attainment and sustenance of optimal energy supply and utilization. Within this framework, paramount objectives include the minimization of energy expenditures and environmental impacts, all while safeguarding production processes and maintaining product quality standards. To this end, EMS harnesses a myriad of optimization methodologies tailored to meet predefined objectives and constraints, thereby ensuring alignment with organizational goals and operational imperatives. The objective of energy management implemented for residential consumers is multifaceted. It aims to empower residential consumers to exercise autonomy over their energy usage and fulfill their energy needs by leveraging available production resources, whether they are interconnected with the distribution network or operating off-grid. By doing so, energy management systems bolster the resilience and efficiency of the overall energy network, facilitating controlled and reliable grid integration while actively participating in energy market dynamics. This strategic approach not only enhances consumption efficiency but also fosters greater flexibility and controllability, thereby optimizing economic efficiency within the energy ecosystem. By enabling residential consumers to engage more actively in energy decision-making processes and resource consumers strategies, energy management initiatives foster a symbiotic relationship between consumer empowerment and grid stability, ultimately contributing to a more sustainable and resilient energy landscape. To realize these objectives for residential consumers, a comprehensive infrastructure comprising energy production sources, energy storage systems, inverters, and network connectivity is indispensable. These components collectively form the backbone of an integrated energy management system tailored to meet the unique requirements of residential consumers. Moreover, the seamless coordination and orchestration of these elements are essential to ensure the smooth flow of operations in alignment with the predefined goals and constraints established within the system. Central to this endeavor is the strategic consideration of network energy prices, which play a pivotal role in shaping consumption patterns and resource utilization strategies. By factoring in fluctuating energy prices, the energy management system can optimize decision-making processes and resource allocation, thereby maximizing cost savings and enhancing overall economic efficiency for residential consumers. In essence, the integration of energy production, storage, and distribution infrastructure, coupled with real-time price sensitivity, enables residential consumers to optimize their energy consumption patterns while contributing to the stability and sustainability of the broader energy grid. The integration of renewable energy sources and energy storage systems (ESS) holds immense promise for residential consumers, ushering in an era of clean and sustainable energy production. By harnessing renewable sources such as solar, wind, or geothermal energy, coupled with advanced energy storage technologies, residential consumers can access a reliable and environmentally friendly energy supply. Moreover, the deployment of Energy Management Systems (EMS) further enhances the efficiency and effectiveness of energy utilization within residential settings. Through precise monitoring, control, and optimization of energy usage, EMS enables users to leverage renewable energy sources and storage systems with optimal efficiency. This not only minimizes electricity bills for residential consumers but also fosters a transition towards a greener and more resilient energy ecosystem. Ultimately, the synergy between renewable energy sources, energy storage systems, and EMS empowers residential consumers to embrace sustainable energy practices while enjoying cost savings and enhanced energy reliability. This transformative shift towards clean and continuous energy usage represents a significant step forward in fostering environmental stewardship and advancing towards a more sustainable future. The study employed rooftop photovoltaic (PV) systems as the primary electricity generation source for residential consumers. The design and analysis of these systems were conducted using the PVsyst 7.4 program. PVsyst was chosen as the preferred software for this study due to its reputation for reliability, accuracy, and widespread use within the field of solar energy analysis and design. The selection of PVsyst underscores the importance of utilizing trusted and well-established software tools in conducting rigorous analysis and design of rooftop PV systems. By leveraging the capabilities of PVsyst, researchers were able to accurately model the performance and potential energy yield of rooftop PV installations under varying conditions, including factors such as location, tilt, orientation, shading, and system configuration. Overall, the utilization of PVsyst in the study ensured robustness and credibility in the design and assessment of rooftop PV systems, thereby providing valuable insights into their feasibility, performance, and potential benefits for residential electricity consumers. In pursuit of the stated objectives, this thesis study conducted three distinct analyses tailored to residential consumer types exhibiting three diverse load profiles across 14 provinces situated within seven distinct regions of Turkey. Initially, a meticulous design of rooftop solar power systems was undertaken employing the PVsyst 7.4 program, complemented by the generation of monthly production forecasts spanning a year utilizing the same model across all provinces. Subsequently, with the primary goal of alleviating the monthly electricity expenses borne by residential consumers, an Energy Management System (EMS) was meticulously devised implemented within the MATLAB environment. The selection of the method using Excel, renowned for its classical efficacy, was motivated by its ability to minimize electricity bills by effectively formulating and solving optimization problems within predefined constraints. The study further encompassed the computation of monthly electricity bills and net monetary flows across the 14 provinces under three distinct scenarios: (i) direct grid connection, (ii) grid connection augmented by rooftop PV systems, and (iii) grid connection supplemented with both rooftop PV systems and Energy Storage Systems (ESS). Finally, economic analyses were conducted to evaluate the financial viability and benefits associated with the deployment of rooftop PV systems and ESS within each province, providing valuable insights into their economic feasibility and potential contributions to the residential energy landscape. According to the results obtained, when the rooftop solar power generation data is first examined, it is seen that the highest production occurs in Antalya. According to all results, production increases as you move from north to south on the map. Secondly, when electricity bills are examined according to provinces and residential consumers in the scenarios; There are improvements in bills for all consumers with rooftop solar power system. When ESS is included for the consumer, the profit he earns from the electricity he sells to the grid increases. When the results of residential consumers profiles are examined and compared with the studies in the literature, it is revealed that the EMS works correctly with the specified constraints in line with the defined purpose. Upon scrutinizing the economic analyses conducted across various scenarios, notable findings emerge. In scenarios where solely rooftop solar power is connected, the Profitability Index (PI) values for Artvin, Istanbul, and Kastamonu provinces fall below 1, indicating a lack of viability and applicability in these regions. Conversely, Antalya stands out as the most suitable location, boasting a PI value of 1.31, suggesting favorable economic prospects for rooftop solar power deployment. In contrast, when considering scenarios incorporating both rooftop PV and Energy Storage Systems (ESS), no province exhibits PI values exceeding 1. This observation underscores the challenges associated with integrating ESS into residential energy systems and highlights the need for further refinement and optimization to enhance economic viability. These findings underscore the nuanced interplay between geographical factors, technological considerations, and economic feasibility in shaping the adoption and implementation of renewable energy solutions. Moving forward, concerted efforts are warranted to address barriers to entry and enhance the economic attractiveness of renewable energy technologies, thereby fostering their widespread adoption and contributing to a more sustainable energy landscape. The implementation of an Energy Management System (EMS) enables residential consumers to integrate rooftop solar power systems and Energy Storage Systems (ESS), resulting in reduced monthly electricity bills and potential profitability through the sale of excess energy to the grid. However, the incorporation of ESS may lead to increased turnaround times for consumers due to heightened costs. This study serves as a valuable reference for electricity consumers with high energy consumption or those considering the installation of rooftop solar power systems. Based on the findings, it is recommended that residential consumers explore the adoption of rooftop solar power systems to capitalize on the benefits of renewable energy. Furthermore, there is a pressing need to expand the accessibility of solar energy technologies and promote their widespread adoption to foster efficient energy usage and contribute to a sustainable future. Regarding ESS, efforts should focus on reducing costs and extending the lifespan of these systems to enhance their viability and attractiveness for residential consumers. Governments and policymakers are encouraged to incentivize the establishment of photovoltaic (PV) systems and create opportunities for the proliferation of ESS utilization, thereby advancing the transition towards a cleaner and more sustainable energy landscape.

Benzer Tezler

  1. Yapay sinir ağları ile Denizli ili mesken aboneleri elektrik tüketim tahmini

    Electricity comsuption forecast for residential subscribers in Denizli with artificial neural network

    SEVGİ ÖKSÜZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Endüstri ve Endüstri MühendisliğiPamukkale Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HACER GÜNER GÖREN

  2. Yeni bir yaklaşımla yük profillerinin oluşturulması ve dağıtım sistemlerinde teknik kayıpların tahmini

    A novel approach for load profile formation and technical loss estimation of electrical disrtibution systems

    GİZEM TULUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖMER USTA

  3. Mobil telefon kullanımına bağlı oluşan 900-1800 mhz radyo frekans dalgalarının meydana getirdiği elektromanyetik alanın iliak kanat kemik mineral yoğunluğuna etkisi

    The effect of electromagnetic fields on bone mineral density of iliac bone produced by 900-1800 mhz radio frequency waves dependent on cellular phone usage

    BEŞİR ANDAÇ AKSOY

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2006

    Ortopedi ve TravmatolojiSüleyman Demirel Üniversitesi

    Ortopedi ve Travmatoloji Ana Bilim Dalı

    PROF.DR. NEVRES HÜRRİYET AYDOĞAN

  4. Dinamik reaktif kompanzasyon sisteminin dağıtım transformatörlerine uygulanması üzerine bir analiz.

    An analysis on dynamic reactive compensation system application to distribution tranformers.

    HASAN VEYSEL DOĞAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Elektrik ve Elektronik MühendisliğiFırat Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÇETİN GENÇER

  5. Yolsuzluğun elektrik piyasasında fiyatlara ve etkinliğe etkisi

    The impact of corruption on prices and efficiency in the electricity market

    FUNDA ALTUN

    Doktora

    Türkçe

    Türkçe

    2021

    EkonomiAnkara Üniversitesi

    İktisat Ana Bilim Dalı

    DOÇ. DR. MUSTAFA KADİR DOĞAN