Geri Dön

Detection and classification of femoral neck fracture using YOLOv8

YOLOv8 kullanarak femoral boyun kırığının tespiti ve sınıflandırılması

  1. Tez No: 900134
  2. Yazar: MOUSAB ABIBI ABDI
  3. Danışmanlar: PROF. DR. RAFET AKDENİZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: İngilizce
  9. Üniversite: İstanbul Aydın Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 53

Özet

Femoral neck fractures are considered to be one of the most challenging orthopedic conditions because of the technical difficulties in the management of these injuries and possible complications, including nonunion and avascular necrosis. These fractures are common in elderly patients and they mostly occur due to low energy trauma such as falls. Early diagnosis and identification of femoral neck fractures are critical to proper clinical management and in reducing complications. This study employs the YOLOv8 model, which is a recent advancement in object detection, to detect and classify femoral neck fractures in X-ray images. The YOLOv8 model shows impressive results, with the mean Average Precision mAP50 of 97. 9%, a precision of 93. 5%, and a mAP50-95 of 62. 5%. Our proposed system encompasses several stages: data collecting, data preprocessing, model training, model validation, and model deployment. In the process of data preprocessing several data augmentation methods was performed to improve the model's resilience. The YOLOv8 model was then trained with this dataset and further rigorous testing conducted to determine the efficiency of the model. The results show that the proposed model has great potential for the automatic detection and classification of femoral neck fractures, which will be helpful for radiologists. When implemented in clinical environments, this system may increase diagnostic accuracy, decrease the workload, and consequently, benefit patients.

Özet (Çeviri)

Femoral neck fractures are considered to be one of the most challenging orthopedic conditions because of the technical difficulties in the management of these injuries and possible complications, including nonunion and avascular necrosis. These fractures are common in elderly patients and they mostly occur due to low energy trauma such as falls. Early diagnosis and identification of femoral neck fractures are critical to proper clinical management and in reducing complications. This study employs the YOLOv8 model, which is a recent advancement in object detection, to detect and classify femoral neck fractures in X-ray images. The YOLOv8 model shows impressive results, with the mean Average Precision mAP50 of 97. 9%, a precision of 93. 5%, and a mAP50-95 of 62. 5%. Our proposed system encompasses several stages: data collecting, data preprocessing, model training, model validation, and model deployment. In the process of data preprocessing several data augmentation methods was performed to improve the model's resilience. The YOLOv8 model was then trained with this dataset and further rigorous testing conducted to determine the efficiency of the model. The results show that the proposed model has great potential for the automatic detection and classification of femoral neck fractures, which will be helpful for radiologists. When implemented in clinical environments, this system may increase diagnostic accuracy, decrease the workload, and consequently, benefit patients.

Benzer Tezler

  1. Derin öğrenme teknikleri kullanılarak kemik kırığı tespiti ve sınıflandırması

    Bone fracture detection and classification using deep learning techniques

    KORAY AÇICI

    Doktora

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ EMRE SÜMER

  2. Femur boyun kırıklarında internal fixasyon

    Internal fixation of femoral neck fractures

    MEHMET GEM

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2010

    Ortopedi ve TravmatolojiDicle Üniversitesi

    Ortopedi ve Travmatoloji Ana Bilim Dalı

    PROF. DR. AHMET KAPUKAKAYA

  3. Travma hastalarına çekilen abdominal tomografi görüntülerinin acil tıp asistanı tarafından akut travma patolojilerini değerlendirme düzeyi

    The level of evaluation of acute trauma pathologies by the emergency medicine assistant of abdominal tomography images taken in trauma patients

    MEHMET SOYUGÜZEL

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2022

    Acil TıpAfyonkarahisar Sağlık Bilimleri Üniversitesi

    Acil Tıp Ana Bilim Dalı

    YRD. DOÇ. DR. AYŞE ERTEKİN

  4. Bilgisayarlı tomografinin hu (hounsfield unit) değeri ile dexa (dual enerji x-ışını absorbsiyometri) skorlamalarının karşılaştırılması ve bilgisayarlı tomografinin dansitometri değerinin osteoporoz tanısına katkısı

    The comparison of hounsfield unit values calculated on computed tomography images and dual energy x-ray absorpsiometry scores for the diagnosis osteoporosi̇s

    MUHAMMED ALPASLAN

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2015

    Radyoloji ve Nükleer TıpVan Yüzüncü Yıl Üniversitesi

    Radyoloji Ana Bilim Dalı

    YRD. DOÇ. DR. AYDIN BORA

  5. 3-D automatic segmentation and modelling of cartilage compartments in high-field magnetic resonance images of the knee joint

    Diz ekleminin yüksek alan manyetik rezonans görüntülerinde kıkırdak bölgelerini 3-B otomatik bölütleme ve modelleme

    CEYDA NUR ÖZTÜRK

    Doktora

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SONGÜL ALBAYRAK