Detection and classification of femoral neck fracture using YOLOv8
YOLOv8 kullanarak femoral boyun kırığının tespiti ve sınıflandırılması
- Tez No: 900134
- Danışmanlar: PROF. DR. RAFET AKDENİZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2024
- Dil: İngilizce
- Üniversite: İstanbul Aydın Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 53
Özet
Femoral neck fractures are considered to be one of the most challenging orthopedic conditions because of the technical difficulties in the management of these injuries and possible complications, including nonunion and avascular necrosis. These fractures are common in elderly patients and they mostly occur due to low energy trauma such as falls. Early diagnosis and identification of femoral neck fractures are critical to proper clinical management and in reducing complications. This study employs the YOLOv8 model, which is a recent advancement in object detection, to detect and classify femoral neck fractures in X-ray images. The YOLOv8 model shows impressive results, with the mean Average Precision mAP50 of 97. 9%, a precision of 93. 5%, and a mAP50-95 of 62. 5%. Our proposed system encompasses several stages: data collecting, data preprocessing, model training, model validation, and model deployment. In the process of data preprocessing several data augmentation methods was performed to improve the model's resilience. The YOLOv8 model was then trained with this dataset and further rigorous testing conducted to determine the efficiency of the model. The results show that the proposed model has great potential for the automatic detection and classification of femoral neck fractures, which will be helpful for radiologists. When implemented in clinical environments, this system may increase diagnostic accuracy, decrease the workload, and consequently, benefit patients.
Özet (Çeviri)
Femoral neck fractures are considered to be one of the most challenging orthopedic conditions because of the technical difficulties in the management of these injuries and possible complications, including nonunion and avascular necrosis. These fractures are common in elderly patients and they mostly occur due to low energy trauma such as falls. Early diagnosis and identification of femoral neck fractures are critical to proper clinical management and in reducing complications. This study employs the YOLOv8 model, which is a recent advancement in object detection, to detect and classify femoral neck fractures in X-ray images. The YOLOv8 model shows impressive results, with the mean Average Precision mAP50 of 97. 9%, a precision of 93. 5%, and a mAP50-95 of 62. 5%. Our proposed system encompasses several stages: data collecting, data preprocessing, model training, model validation, and model deployment. In the process of data preprocessing several data augmentation methods was performed to improve the model's resilience. The YOLOv8 model was then trained with this dataset and further rigorous testing conducted to determine the efficiency of the model. The results show that the proposed model has great potential for the automatic detection and classification of femoral neck fractures, which will be helpful for radiologists. When implemented in clinical environments, this system may increase diagnostic accuracy, decrease the workload, and consequently, benefit patients.
Benzer Tezler
- Derin öğrenme teknikleri kullanılarak kemik kırığı tespiti ve sınıflandırması
Bone fracture detection and classification using deep learning techniques
KORAY AÇICI
Doktora
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ EMRE SÜMER
- Femur boyun kırıklarında internal fixasyon
Internal fixation of femoral neck fractures
MEHMET GEM
Tıpta Uzmanlık
Türkçe
2010
Ortopedi ve TravmatolojiDicle ÜniversitesiOrtopedi ve Travmatoloji Ana Bilim Dalı
PROF. DR. AHMET KAPUKAKAYA
- Travma hastalarına çekilen abdominal tomografi görüntülerinin acil tıp asistanı tarafından akut travma patolojilerini değerlendirme düzeyi
The level of evaluation of acute trauma pathologies by the emergency medicine assistant of abdominal tomography images taken in trauma patients
MEHMET SOYUGÜZEL
Tıpta Uzmanlık
Türkçe
2022
Acil TıpAfyonkarahisar Sağlık Bilimleri ÜniversitesiAcil Tıp Ana Bilim Dalı
YRD. DOÇ. DR. AYŞE ERTEKİN
- Bilgisayarlı tomografinin hu (hounsfield unit) değeri ile dexa (dual enerji x-ışını absorbsiyometri) skorlamalarının karşılaştırılması ve bilgisayarlı tomografinin dansitometri değerinin osteoporoz tanısına katkısı
The comparison of hounsfield unit values calculated on computed tomography images and dual energy x-ray absorpsiometry scores for the diagnosis osteoporosi̇s
MUHAMMED ALPASLAN
Tıpta Uzmanlık
Türkçe
2015
Radyoloji ve Nükleer TıpVan Yüzüncü Yıl ÜniversitesiRadyoloji Ana Bilim Dalı
YRD. DOÇ. DR. AYDIN BORA
- 3-D automatic segmentation and modelling of cartilage compartments in high-field magnetic resonance images of the knee joint
Diz ekleminin yüksek alan manyetik rezonans görüntülerinde kıkırdak bölgelerini 3-B otomatik bölütleme ve modelleme
CEYDA NUR ÖZTÜRK
Doktora
İngilizce
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. SONGÜL ALBAYRAK