Geri Dön

Makı̇ne öğrenı̇mı̇ teknı̇klerı̇ ı̇le mekanı̇k parçaların 3 boyutlu tasarımlarının sınıflandırılması

Classification of 3D designs of mechanical parts using machine learning techniques

  1. Tez No: 904154
  2. Yazar: IŞIL ATASOY
  3. Danışmanlar: DR. ÖĞR. ÜYESİ ÇAĞATAY BERKE ERDAŞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Başkent Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 57

Özet

Makine öğrenmesi teknikleri kullanılarak geliştirilen veri işleme uygulamaları son yıllarda oldukça büyük bir hız ile gelişme kat etmekte ve farklı alanlarda birçok probleme çözümler sunmaktadır. Yazılım destekli çözümleri kullanan tüm sektörlerden alınan veriler incelendiğinde sonuç olarak verimliliklerin arttığı, insan kaynaklı hataların ve gecikmelerin önüne geçildiği gözlemlenmiştir. Bu çalışmada üretim ve tasarım endüstrisinde kullanılan standart mekanik parçaların derin öğrenme algoritmaları kullanılarak sınıflandırılması amaçlanmaktadır. Buna ek olarak, çalışmada kullanılan modellerin performansları karşılaştırılacaktır. Çalışma kapsamında iki aşamalı bir deney kurulmuştur. Deneyin aşamaları birbirinden bağımsız olup, sonuçları da bağımsız olarak değerlendirilmiştir. İlk aşamada cıvata, pim, somun, rondela mekanik parçalarının dijital tasarımlarından oluşan hazır bir veri seti kullanılmıştır. Bu veri seti her parçadan eşit sayıda 224x224x3 boyutlarında görseller içerecek şekilde toplamda 7616 adet örneklemden oluşmaktadır. İkinci aşamada ise aynı tasarım görsellerine ek olarak mekanik parçaların gerçek fotoğrafları da eklenip toplamda 1600 adet örnekten oluşan yeni bir veri seti oluşturulmuştur. Daha sonra deneyin her iki adımında da parçaların tanınma problemine çözüm bulmak için AlexNet, VGG, DenseNet, ResNet ve Xception sınıflandırma modelleri tercih edilerek, sonuçlar kaydedilmiştir. İlk adımda modeller sırasıyla ortalama 0.25, 0.25, 0.60, 0.69 ve 0.75 doğruluk oranları sunmuştur. İkinci adımda ise sırasıyla ortalama 0.27, 0.25, 0.65, 0.85 ve 0.96 doğrulukla başarı elde etmişlerdir. Çalışmanın sonuçlarında modellerin performans karşılaştırmaları belirtilmiştir.

Özet (Çeviri)

Machine learning techniques and data processing applications have been developing rapidly in recent years and offer solutions to many problems in different fields. Efficiency has increased in all sectors using software-supported solutions, and human errors and delays have been prevented. This study aims to classify standard mechanical parts used in the production and design industry using deep learning algorithms. In addition, the performances of the models used in the study will be compared. A two-stage experiment was established within the scope of the study. The stages of the experiment were independent from each other and the results were evaluated independently. In the first stage, a ready-made data set consisting of digital designs of mechanical parts of bolts, pins, nuts and washers was used. This data set consists of 7616 samples in total, including an equal number of 224x224x3 images from each piece. In the second stage, in addition to the same design visuals, real photographs of mechanical parts were added and a new data set consisting of 1600 samples in total was created. Then, in both steps of the experiment, AlexNet, VGG, EfficientNet, ResNet and Xception classification models were preferred to find a solution to the problem of recognition of parts, and the results were recorded. Then, in both steps, AlexNet, VGG, EfficientNet, ResNet and Xception models were preferred to list the broken ones and the results were generated. Initial replacement models offered average accuracy rates of 0.25, 0.25, 0.60, 0.69 and 0.75, respectively. Secondary renewal was successful with an average accuracy of 0.27, 0.25, 0.65, 0.85 and 0.96, respectively. The results of the study are stated in the comparison performances of the models.

Benzer Tezler

  1. Yeni Cami'nin akustik açıdan performans değerlendirmesi

    Evaluation of the acoustical performance of the New Mosque

    EVREN YILDIRIM

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. SEVTAP YILMAZ DEMİRKALE

  2. Prediction of flow rates from different entries using PLT p-T measurements in a horizontal well by machine learning methods

    Makine öğrenmesi teknikleri ile bir yatay kuyunun farklı girişlerin debilerinin PLT p-T ölçümlerinden tahmini

    MUHARREM HİLMİ ÇEVİK

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Petrol ve Doğal Gaz Mühendisliğiİstanbul Teknik Üniversitesi

    Petrol ve Doğal Gaz Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MURAT ÇINAR

  3. Development of a modular pulmonary resuscitation device for chronic and acute respiratory support

    Kronik ve akut solunum desteği için modüler pulmoner resüsitasyon cihazının geliştirilmesi

    MUNAM ARSHAD

    Doktora

    İngilizce

    İngilizce

    2023

    BiyofizikKoç Üniversitesi

    Biyomedikal Bilimler ve Mühendislik Ana Bilim Dalı

    PROF. DR. İSMAİL LAZOĞLU

  4. Thermodynamic stability of binary compounds: A comprehensive computational and machine learning approach

    İkili bileşiklerin termodinamik kararlılığı: Kapsamlı bir hesaplamalı yaklaşım ve makine öğrenmesi uygulaması

    FERAYE HATİCE CANBAZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı

    PROF. DR. ADEM TEKİN

  5. Condition monitoring and fault detection for electrical power systems using signal processing and machine learning techniques

    Sı̇nyal ı̇şleme ve makı̇ne öğrenme teknı̇klerı̇ kullanılarak elektrı̇k güç sı̇stemleri ı̇çı̇n durum ı̇zleme ve arıza belirleme

    YASMIN NASSER MOHAMED

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞAHİN SERHAT ŞEKER