Short term workload prediction: The reservoir computing approach
Başlık çevirisi mevcut değil.
- Tez No: 918800
- Danışmanlar: Belirtilmemiş.
- Tez Türü: Yüksek Lisans
- Konular: Belirtilmemiş.
- Anahtar Kelimeler: Echo State Network, Recurrent Neural Network, Machine Learning, Recursive and n-point ahead direct Time Series Prediction
- Yıl: 2014
- Dil: İngilizce
- Üniversite: State University of New York at Binghamton
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 101
Özet
Özet yok.
Özet (Çeviri)
'What's going to happen in the future?' Time series data holds the answers, and machine learning is the leading edge method for interpreting and using the data. Machine learning is a research field that revolves around algorithms by which a computer learns from obtained data, which is from past experiences. The machine learning technique used in this work is called reservoir computing. It is a simplified structure of the human brain that uses a randomly created, recurrent network of artificial neurons called an echo state network. Reservoir computing is dependent on a nonlinear dynamic system. This system is fed with an input sequence that is mapped to a higher dimension space. During the process of training the system, only a linear readout is altered by the state of the reservoir. The input connections and recurrent connections in the system are left unchanged. This approach greatly decreases the time required to train this recurrent neural network, but does not affect the performance of the tasks. Saving energy should not be the foremost priority when IT service demand cannot be met in accordance with the predefined SLAs. The main goal is to design the DC where the IT capacities are just at the right level to meet the instantaneous demand to save energy. However, the main challenge is to predict workload usage in advance since it takes a finite amount of time to activate the servers and to adjust the cooling. The server activation takes a few minutes so it is imperative to have techniques that predict three to a few minutes in advance. Our objective is to predict the workload for a short-term (three minutes ahead) prediction interval using the reservoir computing approach. This research is concentrated on understanding the differences between direct n-point ahead and recursive predictions using reservoir systems in short term predictions.
Benzer Tezler
- Derin öğrenme yöntemleri ile zaman serisi tahmini
Time series classification with deep learning methods
HAKAN GÜNDÜZ
Doktora
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ZEHRA ÇATALTEPE
- Yapay zeka tabanlı modelleme ile yoğun mail sistem trafiğinin tahmini
Prediction of dense mail system traffic with artificial intelligence-based modeling
MUHAMMET MUSTAFA EDİS
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolİSTANBUL NİŞANTAŞI ÜNİVERSİTESİYapay Zeka Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ DUYGU ŞEN BAYKAL
- Yapay zekâ-tabanlı hibrit anomali tespit ve klinik karar destek teknikleri ile kardiyovasküler hastalıkların ve COVİD-19'un otomatik tespiti
Artificial intelligence-based hybrid anomaly detection and clinical decision support techniques for automated detection of cardiovascular diseases and COVİD-19
MERVE BEGÜM TERZİ
Doktora
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ORHAN ARIKAN
- Bilişim teknolojisi altyapı kütüphaneliği çerçevesinde operasyonel süreçlerin süreç madenciliği, tahminleme ve kesikli olay simülasyonu ile iyileştirilmesi
Improving operational processes through process mining, forecasting, and discrete-event simulation within the itil framework
AYŞEGÜL KAÇAR
Yüksek Lisans
Türkçe
2025
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ERKAN IŞIKLI
- Hemşirelik öğrencilerinin spor yapma davranışlarının algılanan stres, biyo-psiko-sosyal cevap ve stresle başetme davranışları üzerine etkileri
The effects of the nursing students' sport habits on the stress perceived, bio-psycho-social response and coping behaviours of stress
EREN BOZYILAN
Yüksek Lisans
Türkçe
2018
HemşirelikGaziantep ÜniversitesiHemşirelik Ana Bilim Dalı
DOÇ. DR. ZEYNEP GÜNGÖRMÜŞ