Geri Dön

Short term workload prediction: The reservoir computing approach

Başlık çevirisi mevcut değil.

  1. Tez No: 918800
  2. Yazar: ALPER ALİMOĞLU
  3. Danışmanlar: Belirtilmemiş.
  4. Tez Türü: Yüksek Lisans
  5. Konular: Belirtilmemiş.
  6. Anahtar Kelimeler: Echo State Network, Recurrent Neural Network, Machine Learning, Recursive and n-point ahead direct Time Series Prediction
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: State University of New York at Binghamton
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 101

Özet

Özet yok.

Özet (Çeviri)

'What's going to happen in the future?' Time series data holds the answers, and machine learning is the leading edge method for interpreting and using the data. Machine learning is a research field that revolves around algorithms by which a computer learns from obtained data, which is from past experiences. The machine learning technique used in this work is called reservoir computing. It is a simplified structure of the human brain that uses a randomly created, recurrent network of artificial neurons called an echo state network. Reservoir computing is dependent on a nonlinear dynamic system. This system is fed with an input sequence that is mapped to a higher dimension space. During the process of training the system, only a linear readout is altered by the state of the reservoir. The input connections and recurrent connections in the system are left unchanged. This approach greatly decreases the time required to train this recurrent neural network, but does not affect the performance of the tasks. Saving energy should not be the foremost priority when IT service demand cannot be met in accordance with the predefined SLAs. The main goal is to design the DC where the IT capacities are just at the right level to meet the instantaneous demand to save energy. However, the main challenge is to predict workload usage in advance since it takes a finite amount of time to activate the servers and to adjust the cooling. The server activation takes a few minutes so it is imperative to have techniques that predict three to a few minutes in advance. Our objective is to predict the workload for a short-term (three minutes ahead) prediction interval using the reservoir computing approach. This research is concentrated on understanding the differences between direct n-point ahead and recursive predictions using reservoir systems in short term predictions.

Benzer Tezler

  1. Derin öğrenme yöntemleri ile zaman serisi tahmini

    Time series classification with deep learning methods

    HAKAN GÜNDÜZ

    Doktora

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ZEHRA ÇATALTEPE

  2. Yapay zeka tabanlı modelleme ile yoğun mail sistem trafiğinin tahmini

    Prediction of dense mail system traffic with artificial intelligence-based modeling

    MUHAMMET MUSTAFA EDİS

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolİSTANBUL NİŞANTAŞI ÜNİVERSİTESİ

    Yapay Zeka Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DUYGU ŞEN BAYKAL

  3. Yapay zekâ-tabanlı hibrit anomali tespit ve klinik karar destek teknikleri ile kardiyovasküler hastalıkların ve COVİD-19'un otomatik tespiti

    Artificial intelligence-based hybrid anomaly detection and clinical decision support techniques for automated detection of cardiovascular diseases and COVİD-19

    MERVE BEGÜM TERZİ

    Doktora

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ORHAN ARIKAN

  4. Bilişim teknolojisi altyapı kütüphaneliği çerçevesinde operasyonel süreçlerin süreç madenciliği, tahminleme ve kesikli olay simülasyonu ile iyileştirilmesi

    Improving operational processes through process mining, forecasting, and discrete-event simulation within the itil framework

    AYŞEGÜL KAÇAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ERKAN IŞIKLI

  5. Hemşirelik öğrencilerinin spor yapma davranışlarının algılanan stres, biyo-psiko-sosyal cevap ve stresle başetme davranışları üzerine etkileri

    The effects of the nursing students' sport habits on the stress perceived, bio-psycho-social response and coping behaviours of stress

    EREN BOZYILAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    HemşirelikGaziantep Üniversitesi

    Hemşirelik Ana Bilim Dalı

    DOÇ. DR. ZEYNEP GÜNGÖRMÜŞ