NMC/LCO/LMO tipi lityum-iyon bataryaların siyah kütlesinden kritik metallerin geri kazanımı
Recovery of critical metals from black mass of NMC/LCO/LMO type lithium-ion batteries
- Tez No: 920191
- Danışmanlar: PROF. DR. FIRAT BURAT, PROF. DR. SEBAHATTİN GÜRMEN
- Tez Türü: Yüksek Lisans
- Konular: Maden Mühendisliği ve Madencilik, Metalurji Mühendisliği, Mining Engineering and Mining, Metallurgical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Cevher Hazırlama Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Cevher Hazırlama Mühendisliği Bilim Dalı
- Sayfa Sayısı: 181
Özet
Lityum iyon piller (LiB), cep telefonları, kişisel bilgisayarlar ve elektrikli araçlar dahil olmak üzere birçok alanda uygulamaları olan çağdaş teknolojinin vazgeçilmez bir parçasıdır. Katot malzemeleri LiCoO₂ (LCO), LiNixMnyCo(1-x-y)O₂ (NMC) ve LiMn₂O₄ (LMO), özgül enerji değerleri nedeniyle bu uygulamalarda yaygın olarak kullanılmaktadır. Ekonomik ve çevresel faktörler nedeniyle etkin ömrü sona eren LiB'deki katot malzemelerinden değerli metallerin (Li, Co, Ni ve Mn) geri kazanılması bir zorunluluk haline gelmiştir. Bu tez çalışması kapsamında, kullanım ömrü dolmuş NMC/LCO/LMO LiB aktif anot ve katot malzemesinden ultrasonik destekli liç işlemi, solvent ekstraksiyon ve çöktürme yöntemleri ile Li, Co, Ni ve Mn gibi değerli metallerin yüksek geri kazanım verimlilikleriyle elde edilmesi amaçlanmıştır. Öncelikle deşarj edilen ve boyut küçültme işlemi uygulanan LiB hücrelerinden eleme yöntemi ile elde edilen siyah kütlenin ayrıntılı bir karakterizasyonu yapılmıştır. Daha sonra, asit tüketimini ve liç süresini en aza indirmek için siyah kütle üzerinde ultrasonik destekli liç işlemi gerçekleştirilmiştir. Ayrıca bu çalışmada çeşitli asit tipleri, liç süreleri, asit konsantrasyonları, redükleyici ajan konsantrasyonları, ultrasonikasyon, katı/sıvı oranları ve sıcaklıkların liç verimliliği üzerindeki etkisi incelenmiştir. Ek olarak liç kinetiği araştırılmış ve liç kalıntısının kapsamlı bir karakterizasyonu yapılmıştır. Liç ortamı olarak HCl, H₂SO₄ ve HNO₃ seçilmiş ve indirgeyici madde olarak askorbik asit (C6H8O6) kullanılmıştır. Yapılan çalışmalar sonucunda %96,8 Li, %99,2 Co, %96,4 Mn ve %93,1 Ni çözünme verimlilikleri 0,5 M H₂SO₄ konsantrasyonu, 0,15 M askorbik asit konsantrasyonu, 20 g/L katı/sıvı oranı ve bir saatlik ultrasonik destekli liç süresi ile elde edilmiştir. Sonuç olarak, tüm katot metalleri için yaklaşık %95'lik bir verim ön işlem yapılmadan düşük asit konsantrasyonunda ve nispeten kısa bir liç süresinde elde edilmiştir. Liç reaksiyonunun kinetiği ise yüzey kimyasal reaksiyon modeliyle tutarlı olarak elde edilmiştir. Liç çözeltisinden Co²⁺ ve Mn²⁺ iyonlarının seçici şekilde ayrılması için Cyanex-272 kullanılmıştır. Ayırma işlemi 0,6 M Na-Cyanex 272, pH 5, 5 dakika süre, 80 devir/dakika, 1/2,5 A/O oranı ve 25 oC parametreleri ile gerçekleştirilmiş olup, Li+ ve Ni²⁺ iyonları çözeltide bırakılmıştır. Çözeltide bırakılan Ni²⁺ iyonları dimetilglioksim (DMG) ile seçici olarak çöktürülmüştür. Çöktürme, %98,17 verim ile pH 10, 25 oC, DMG/ Ni2+ mol oranı 2, 400 devir/dakika ve 1 saat parametreleri kullanılarak elde edilmiştir. Co²⁺ ve Mn²⁺ iyonlarının ayrımı için ise D2EHPA kullanılmıştır. D2EHPA ile ayrım pH 3, süre 15 dakika, 80 devir/dakika, 0,1 M Na-D2EHPA, 1/2,5 A/O oranı ve 25 oC parametreleri ile gerçekleştirilmesinin yanı sıra, düşük pH değerleri Mn²⁺ ayrımı için optimum sonuçlar vermiştir. Son olarak, Co²⁺ iyonları, pH 8'de kobalt hidroksit olarak çöktürülmüştür. Çöktürme parametreleri ise pH 8, 400 devir/dakika, 25 oC ve 1 saat belirlenmiştir. Çöktürme sırasında oksidasyon sonucu Co(OH)₃ fazı oluşmuş, ve kobalt hidroksit partiküllerinin saflığı ~%99,2 olarak elde edilmiştir.
Özet (Çeviri)
LiBs have become ubiquitous in many technological applications, including smartphones, tablets, computers, household appliances, and electric vehicles. They facilitate the conversion of chemical energy into electrical energy, serving as a primary power source in numerous devices. The research on LiBs dates back to the 1800s and the first commercial LiB powered by a LiCoO2 (LCO) cathode was produced by Sony in the 1980s. LCO-type LiBs were often preferred recently, however, especially due to the high price of Co, various cathode materials such as LiNixMnyCo(1-x-y)O₂ (NMC) and LiMn₂O₄ (LMO) have become frequently used today. One of the essential components of a battery is the cathode, which is responsible for facilitating the release of Li+ ions during the discharge step. Other crucial components of a battery include the cathode material, the anode, which stores Li+ ions during the charging step, and the electrolyte, which provides the medium for ion movement during charging and discharging. Recycling electrolytes, anodes, and cathodes from end-of-life (EoL) LiBs are of significant environmental and economic importance. While the recycling of electrolytes and anodes is also substantial, recovering precious metals in cathode materials is more significant due to the finite nature of these resources and the associated environmental concerns. Recycling Li in the cathode material's structure is important for limiting ores, reducing the carbon footprint resulting from primary source production, and minimizing the environmental damage caused by primary production. Similarly, Co is a metal with limited ore and can be extracted from a specific region. It is identified as a critical metal by the European Union Commission. The recycling of Ni and Mn, as well as Li and Co, which are present in the structure of the cathode material, is of significant environmental and economic importance. Recycling of these metals from spent batteries can be achieved by pyrometallurgy or hydrometallurgy. Hydrometallurgy is a highly effective recycling method, offering several advantages such as the generation of minimal waste, high recovery rates, and reduced energy consumption. The physical and chemical properties of LiB components are quite different from natural ore and due to their complex structure, the economic and technological recovery of metals from these wastes requires many stages. The complex composition of batteries requires a liberation process to separate valuable battery powders from the metallic collector electrode foils and the battery case before a dissolution process. The general hydrometallurgical recycling process of LiBs consists of 4 steps: pretreatment, leaching, solution purification, and metal recovery. In the pretreatment process, after the discharging, the black mass is separated from the metallic electrode collectors using gradual size reduction and classification. However, multi-stage crushing causes contamination and yield losses in the comminuted Cu, Al, and Fe black mass. However, multi-stage crushing causes further fragmentation of components containing Cu, Al, and Fe and contaminates the black mass. The graphite can be recovered from black mass by implementing physical-chemical and/or chemical pre-treatment techniques. The separation of graphite before leaching enhances the efficiency of the dissolution process, however, this pre-treatment can increase the overall cost of the recycling process. The application of a high-efficiency leaching process without pretreatment of black mass offers significant advantages in terms of sustainability, large-scale applicability, and cost. After physical and/or chemical pretreatments, the dissolution of valuable metals from LiBs using mediums such as inorganic acids (H2SO4, HCl, HNO3, etc.), organic acids (formic, malic acid, etc.) or alkaline (NaOH) is performed leaching process. Inorganic acids offer high leaching efficiency due to their solvent nature and facilitate more stable solutions than organic acids. For this reason, industrial-scale recycling facilities commonly prefer inorganic acids for the dissolution of metals. Sulfuric acid, which is cheaper than other types of inorganic acids, is frequently used as a solubilizing agent for cathode materials in black mass. Nevertheless, an acidic medium may prove inadequate for dissolving transition metals such as Co, Mn, and Ni. For example, Co in the cathode structure is difficult to dissolve due to the strong bonds between Co and oxygen and is generally found in the form of Co3+ in the cathode structure, and Co2+ is more accessible to dissolve than Co3+. The efficiency of the leaching process can be enhanced by using reducing agents, including H₂O₂, NaHSO₃, glucose, and ascorbic acid. These agents facilitate the reduction of transition metals, thereby improving the overall performance of the process. Among the reducing agents, ascorbic acid (C6H8O6) is particularly interesting due to its biocompatible structure and capacity to function as both a reducing agent and a solvent. The combined use of sulfuric acid and ascorbic acid increases the leaching efficiency and reduces the process cost. In addition, in the ultrasonically assisted leaching system, ultrasonic sound waves create cavitation bubbles in the solution. The collapsing of these bubbles in the solution increases the temperature and pressure locally and improves the efficiency of the dissolution reaction. The advantages of the ultrasonically assisted dissolution process can be listed as follows: increased leaching efficiency, reduced leaching time, and lower reagent consumption. Among the various lithium-ion battery recycling techniques, solvent extraction is widely preferred. The term solvent extraction refers to the distribution of a solute between two immiscible liquid phases. The solute consists of metals dissolved in the aqueous solution obtained from the leaching of waste materials (e.g., spent LiBs). The two immiscible liquid phases are defined as the aqueous phase resulting from the leaching process and the organic phase, which is mixed with a diluent. In hydrometallurgical processes, precipitation steps can be employed for metal separation, production of final products, or both purposes. As in leaching and solvent extraction, the selection of reagents in precipitation depends on the composition of the solution. Various precipitation methods are utilized in hydrometallurgical operations. Among these, hydroxide precipitation is the most common, where an alkaline reagent is used to reach the precipitation threshold. However, in the recycling of LiBs, selective separation via hydroxide precipitation becomes challenging in NMC-type cathode batteries due to the similar pH ranges required for Ni and Co precipitation, typically between 6.7 and 8.0. On the other hand, sulfide and carbonate precipitation are frequently reported, where Co and Ni are co-precipitated. This thesis aims to recover valuable metals such as Li, Co, Ni, and Mn with high efficiency from spent NMC/LCO/LMO lithium-ion battery active anode and cathode materials using ultrasonic-assisted leaching, solvent extraction, and precipitation methods. Initially, detailed characterization of the black mass obtained from discharged and size-reduced LiB cells through sieving was performed. Subsequently, ultrasonic-assisted leaching was applied to the black mass to minimize acid consumption and leaching duration. Various parameters, including acid types, leaching durations, acid concentrations, reducing agent concentrations, ultrasonic pulse, solid-to-liquid ratios, and temperatures, were investigated for their impact on leaching efficiency. Additionally, leaching kinetics were analyzed, and comprehensive characterization of the leach residue was conducted. For leaching, HCl, H₂SO₄, and HNO₃ were selected as the leaching media, while ascorbic acid (C₆H₈O₆) was used as the reducing agent. The study achieved dissolution efficiencies of 96.8% for Li, 99.2% for Co, 96.4% for Mn, and 93.1% for Ni under optimized conditions: 0.5 M H₂SO₄ concentration, 0.15 M ascorbic acid concentration, a solid-to-liquid ratio of 20 g/L, and a one-hour ultrasonic-assisted leaching process. As a result, an average recovery efficiency of approximately 95% for all cathode metals was achieved without pre-treatment at low acid concentrations and relatively short leaching times. The leaching reaction kinetics were found to be consistent with the surface chemical reaction model. Selective separation of Co²⁺ and Mn²⁺ ions from the leach solution was carried out using Cyanex-272. The separation process was conducted under the following parameters: 0.6 M Na-Cyanex 272, pH 5, 5 minutes, 80 rpm, 1:2.5 A/O ratio, and 25°C. Li⁺ and Ni²⁺ ions remained in the solution after separation. The Ni²⁺ ions remaining in the solution were selectively precipitated using dimethylglyoxime (DMG). Precipitation was achieved with 98.17% efficiency under the conditions of pH 10, 25°C, a DMG/Ni²⁺ molar ratio of 2, 400 rpm, and a duration of 1 hour. For the separation of Co²⁺ and Mn²⁺ ions, D2EHPA was employed. The separation using D2EHPA was carried out at pH 3, with a contact time of 15 minutes, 80 rpm, 0.1 M Na-D2EHPA, 1:2.5 A/O ratio, and 25°C. Low pH values were found to provide optimal results for Mn²⁺ separation. Finally, Co²⁺ ions were precipitated as cobalt hydroxide at pH 8. The precipitation parameters were set as pH 8, 400 rpm, 25°C, and 1 hour. During the precipitation process, Co(OH)₃ phase formation occurred due to oxidation, and the purity of cobalt hydroxide particles was obtained as approximately 99.2%.
Benzer Tezler
- Kullanım ömrünü tamamlamış NMC ve LCO tipi lityum iyon bataryalarındaki toplayıcı elektrot ve polimerlerin flotasyon yöntemi ile geri kazanımının araştırılması
Investigation of recovery of current collectors and polymers in end-of-life NMC and LCO type lithium-ion batteries by flotation method
FULYA MENNİK
Yüksek Lisans
Türkçe
2025
Maden Mühendisliği ve Madencilikİstanbul Teknik ÜniversitesiCevher Hazırlama Mühendisliği Ana Bilim Dalı
PROF. DR. FIRAT BURAT
- Atık lityum iyon pillerdeki değerli metallerin derin ötektik çözelti kullanılarak kapalı kap mikrodalga liç prosesi ile geri kazanımı
Recovery of valuable metals from waste lithium-ion batteries using deep eutectic solvent via closed-vessel microwave leaching process
EMİNE GİZEM YILDIZ
Yüksek Lisans
Türkçe
2025
Metalurji MühendisliğiSakarya ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HASAN ALGÜL
- Lityum iyon pillerden kobalt geri kazanımı
Recovery of cobalt from lithium-ion batteries
DAMLA NUR BİRLİK
Yüksek Lisans
Türkçe
2025
Çevre MühendisliğiEskişehir Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
PROF. DR. MÜFİDE BANAR
- Design of boron doped (nickel manganese cobalt containing) NMC 811 cathode active materials
Bor katkılanmış (nikel mangan kobalt içeren) NMC811 katot aktif malzemelerinin tasarımı
İBRAHİM CAN TOPAKTAŞ
Yüksek Lisans
İngilizce
2024
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
PROF. DR. ÖZGÜL KELEŞ
- Atık lityum iyon batarya bileşenlerinin Li, Co, Ni, Mn esaslı ikincil ürünlere dönüştürülmesi
Conversion of waste lithium-ion battery components into Li, Co, Ni, Mn based secondary products
ERCAN ŞENER
Doktora
Türkçe
2024
Metalurji MühendisliğiEskişehir Teknik ÜniversitesiMalzeme Bilimi ve Mühendisliği Ana Bilim Dalı
PROF. DR. SERVET TURAN
PROF. DR. HİLMİ YURDAKUL