Geri Dön

802.11ax teknolojisi tabanlı kurumsal kablosuz ağların performans analizi ve iyileştirilmesi

Performance analysis and optimization of enterprise wireless networks based on 802.11ax technology

  1. Tez No: 928205
  2. Yazar: BERKAY DAĞTAŞ
  3. Danışmanlar: PROF. DR. İSMAİL HAKKI CEDİMOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Mühendislik Bilimleri, Computer Engineering and Computer Science and Control, Engineering Sciences
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2025
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilişim Sistemleri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

Wi-Fi teknolojisi, günümüzde hem bireysel hem de kurumsal kullanımda kritik bir öneme sahiptir. Artan cihaz sayısı ve veri talepleri, özellikle kurumsal kablosuz ağların performans ve güvenilirlik açısından optimize edilmesini zorunlu kılmaktadır. Bu çalışmada, kurumsal kablosuz ağların performansını artırmaya yönelik kapsamlı bir analiz ve iyileştirme çalışması gerçekleştirilmiştir. Çalışmada, Wi-Fi ağlarının sinyal gücü, sinyal-gürültü oranı (SNR), veri hızı, ağ kapasitesi ve kanal çakışması gibi temel performans parametreleri detaylı bir şekilde değerlendirilmiştir. Analiz süreci, A, B ve C adı verilen üç ana binadan oluşan bir kurumsal tesiste, Ekahau AI Pro yazılımı ve Ekahau Sidekick cihazı kullanılarak gerçekleştirilmiştir. Elde edilen veriler, belirli alanlarda sinyal gücü seviyesinin -85 dBm seviyelerine düştüğünü ve bunun ağın kapsama alanını olumsuz etkilediğini ortaya koymuştur. B-C binasının zemin katında, dolaşım (roaming) için ikincil sinyal seviyelerinin yetersiz olduğu tespit edilmiştir. Kampüs genelinde SNR seviyelerinin ortlama 30 dB ve üzeri olduğu gözlemlenmiş ve bu değerlerin ideal bağlantı sağladığı belirlenmiştir. Analiz sırasında, bazı alanlarda aynı kanalda yayın yapan erişim noktalarının sayısının 6'ya kadar çıktığı belirlenmiştir. Bu durum, özellikle yoğun parazitin olduğu bölgelerde ağ performansının düşmesine neden olabilecek bir etken olarak değerlendirilmiştir. Veri hızı 2.4 GHz frekans bandında 1 - 300 Mbps, 5 GHz bandında ise 1 - 585 Mbps arasında değişiklik göstermiştir. Analiz sonuçları doğrultusunda gerçekleştirilen iyileştirme çalışmalarında ise müdahale edilebilirliğin daha yüksek olduğu 5 GHz frekans bandına odaklanılmıştır. Wi-Fi sinyal gücünü zayıflatan birçok faktör bulunmaktadır. Erişim noktalarının yanlış yerleştirilmesi, zayıf Wi-Fi sinyalinin başlıca nedenleri arasında yer alırken; mesafenin etkisi ve iç duvarların sinyal gücü üzerindeki zayıflatıcı etkisi de önemli faktörlerdendir. Tesiste, sinyal seviyesi düşük olan alanlarda sinyal gücü iyileştirmesi için erişim noktalarının konumları ve yönleri yeniden düzenlenmiş, ayrıca ek erişim noktaları eklenmiştir. İyi bir Wi-Fi ağı, minimum erişim noktası sayısı ile maksimum alanı kapsayabilmelidir ve erişim noktalarının doğru şekilde yerleştirilmesi, iyi bir kapsama alanı elde etmede kilit bir unsurdur. Tesisin öne çıkan problemi olan kanal çakışması, 2.4 GHz frekans bandında sınırlı kanal yapısı nedeniyle bu bandın yayınlarının devre dışı bırakılmasıyla çözülmüştür. 5 GHz frekans bandında ise, çakışmayı önlemek için kanallar 20 MHz ile sınırlandırılmış ve erişim noktalarına statik, kanal çakışmasını engelleyici bağımsız atamalar yapılmıştır. Bu iyileştirme adımları, ağ performansının artırılmasında ve kullanıcı deneyiminin iyileştirilmesinde önemli bir katkı sağlamıştır. Çalışma, kurumsal kablosuz ağların performans analizi ve iyileştirilmesi konusunda önemli veriler sunmaktadır.

Özet (Çeviri)

With the rapid development of information and communication technology, the demand for wireless network technology has increased significantly. Wi-Fi is easy to implement in workplaces and educational environments, allowing users to access the internet anytime and anywhere. Wi-Fi technology has become an essential part of modern communication infrastructure for both individual and enterprise users. With the increasing number of devices and growing data demands, optimizing Wi-Fi networks for performance and reliability has become necessary, especially in enterprise environments. This study focuses on analyzing and improving the performance of an enterprise wireless network using advanced tools to identify problems and implement effective solutions. The research aims to comprehensively analyze Wi-Fi networks in terms of performance parameters, suggest optimization strategies, and contribute to academic and technical literature by providing real-world solutions. The main purpose of this research is to evaluate and improve the performance of an enterprise Wi-Fi network using Ekahau AI Pro software and Ekahau Sidekick devices. The study examines critical performance metrics such as signal strength, signal-to-noise ratio (SNR), data transfer rates, throughput and channel overlap. These metrics form the basis for identifying shortcomings and developing strategies to increase network efficiency and reliability. The research also highlights the importance of filling existing knowledge gaps and informing similar initiatives in other environments by implementing practical, real-world solutions. The measurements were first carried out in an office environment using the automatic planner feature of Ekahau AI Pro software, followed by field measurements using Ekahau AI Pro software installed on an iPad and the Ekahau Sidekick device. The Ekahau AI Automatic Planner feature was used to provide quick and effective simulation of wireless network design. This study was conducted in a corporate facility consisting of three main buildings named A, B, and C. Performance tests were carried out using Ekahau AI Pro software and the Ekahau Sidekick device. Various performance metrics such as signal strength, signal-to-noise ratio (SNR), data rate, throughput and channel overlap were examined to evaluate network effectiveness and identify areas needing improvement. The wireless network analysis assessment was conducted according to Ekahau best practices. The values determined within this assessment reflect the coverage requirements necessary for optimal network performance. Signal strength was set at a minimum of -67 dBm in both 2.4 GHz and 5 GHz frequency bands. Secondary signal strength should be at least -67 dBm in the 2.4 GHz and 5 GHz bands. The signal-to-noise ratio (SNR) should be 20 dB for 2.4 GHz and 25 dB or higher for 5 GHz. Data rate should be at least 24 Mbps in both frequency bands. Additionally, channel overlap at minimum signal strength should be -85 dBm from 2 access points in the 2.4 GHz band and -85 dBm from 1 access point in the 5 GHz band. These parameters were determined according to Ekahau best practice standards to ensure efficient and reliable operation of the wireless network. Initial findings revealed significant shortcomings in network design and performance. Specifically, signal strength measurements in some areas reached values as low as -85 dBm, leading to connection interruptions and reduced coverage area. In contrast, areas with signal strength above -67 dBm provided stable and reliable connections. However, performance was negatively affected due to errors in access point (AP) placement. In secondary signal strength assessments, areas where signal strength was above -67 dBm in the 2.4 GHz and 5 GHz bands showed that mobile clients could seamlessly transition between APs, ensuring network redundancy. However, roaming support was inadequate in areas below -67 dBm, negatively affecting network stability. Secondary signal strength in the 5 GHz band can cause connection interruptions during roaming operations, especially in these regions. This made it difficult for mobile devices to maintain continuous and reliable network connections. For successful data transmission, signal strength needs to be higher than environmental noise. In signal-to-noise ratio (SNR) assessments, areas where measured SNR levels were 30 dB and above in both 2.4 GHz and 5 GHz frequency bands provided ideal connections with fast and stable data transmission. However, significant drops in network performance were observed in areas where SNR levels fell below 10 dB. In particular, values between 0-10 dB led to connection interruptions and serious slowdowns in data transmission. This finding shows how critical it is to maintain balance between environmental noise and signal strength, and indicates the need for improvements in areas with low SNR levels. Looking at data rate results, the data rates achieved in 2.4 GHz and 5 GHz frequency bands provide important information about network performance. In the 2.4 GHz band, data rates showed a performance range varying between 1 Mbps and 300 Mbps. In the 5 GHz band, this range varied between 1 Mbps and 585 Mbps. Network performance was observed to work more efficiently in areas where high data rates were achieved. However, areas measured with low data rates experienced a noticeable decrease in network performance. This indicates the need for layout adjustments and improvements to increase network capacity and provide more stable data transmission. Network capacity (Throughput) analyses reflect an important parameter that determines the data transmission speed and efficiency across communication channels in both 2.4 GHz and 5 GHz frequency bands. This parameter is a critical measure that directly affects user experience. While network capacity values in the 2.4 GHz frequency band varied between 1 Mbps and 240 Mbps, these values ranged from 1 Mbps to 420 Mbps in the 5 GHz band. Areas with high network capacity showed more stable and efficient network operation. However, regions with low network capacity experienced slower data transmission and significant drops in connection quality. These findings indicate the need to increase network capacity and improve performance. Channel overlap is a condition that leads to network performance degradation when multiple access points using the same frequency channel interfere with each other. During analysis, it was found that the number of access points broadcasting on the same channel reached up to 6 in some areas. This situation causes channel overlap, especially in high-interference areas, and can negatively affect network performance. Channel overlap reduces data transmission speed, decreases connection stability, and causes network delays. It was determined that adjustments in channel placement and management were necessary to prevent such problems. Various improvements were implemented based on the performance issues detected in the wireless network. As part of signal strength improvements, new access points were added and existing access point locations were reorganized to solve low signal strength and efficiency problems. Additionally, access point output powers were optimized to improve signal distribution. To address roaming issues, access point positions and directions were reconfigured, and secondary signal strength levels were increased. These signal strength improvements not only solved low signal strength problems but also improved low SNR (Signal-to-Noise Ratio) values, increasing network performance. As a result, these improvements reduced connection interruptions and provided more stable, uninterrupted roaming performance. To reduce channel overlaps and improve network performance, access points' frequency and channel configurations were optimized. In the 2.4 GHz band, 2.4 GHz transmission was disabled in areas experiencing overlap due to limited channel structure. In the 5 GHz band, channel width was limited to 20 MHz, and static channel assignments were made to each access point independently to prevent overlaps. These improvements largely eliminated channel overlaps, contributing to more stable and high-performance network connections. Each floor in the facility was upgraded to serve an average capacity of 200 end users. The findings of this study show that correct AP placement and channel configuration directly affect network performance. Improvements aimed at enhancing weak signal areas and reducing interference increased network stability and ensured continuous connectivity. From a security perspective, a stable network design contributes to creating secure communication environments by reducing risks such as unauthorized access and data loss. In future studies, the advantages of Wi-Fi 7 technology's 320 MHz wide channel structure and 6 GHz band in high-density environments could be investigated. Additionally, AI-supported network management systems in areas such as channel optimization and dynamic resource allocation could be examined.

Benzer Tezler

  1. Beam alignment for İEEE 802.11be powered by task oriented indoor UWB localization

    IEEE 802.11be için iç mekan UWB yerelleştirmesi ile destekli görev odaklı ışın hizalaması

    SEMİH SERHAT KARAKAYA

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ GÖKHAN SEÇİNTİ

  2. Design of a chip antenna consisting of a patch located inside a dielectric material that operates in multiple bands

    Dielektrik bir malzemenin içine yerleştirilmiş yamadan oluşan ve birden fazla bantta çalışan bir çip anten tasarımı

    ADAM ALIZADE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiMuğla Sıtkı Koçman Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ KUTLU KARAYAHŞİ

  3. Improving spatial reuse and throughput via OBSS/PD in IEEE 802.11AX

    IEEE 802.11AX kablosuz ağlarında OBSS/PD mekanizmasını kullanarak uzamsal yeniden kullanım ve veri hacmi iyileştirme

    ALİ KARAKOÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HÜSEYİN BİRKAN YILMAZ

    DR. ÖĞR. ÜYESİ MEHMET ŞÜKRÜ KURAN

  4. Bidirectional scheduling for Wi-Fi 6 (IEEE 802.11ax) networks

    IEEE 802.11ax (Wi-Fi 6) için çift yönlü zamanlama

    ABDURRAHMAN DİLMAÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HÜSEYİN BİRKAN YILMAZ

  5. Performance evaluations on the spatial reuse techniques of the next generation wlans

    Yeni nesil kablosuz yerel ağlarında spektral tekrar kullanım tekniklerinin değerlendirmesi

    ÖMER FARUK TOPAL

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. GÜNEŞ ZEYNEP KARABULUT KURT