Geri Dön

Yapay sinir ağı uyarlamalı paralel aktif güç filtresi ile harmonik eliminasyonunun MATLAB/SIMULINK ortamında gerçekleştirilmesi

Harmonic elimination using a parallel active power filter adapted with artificial neural networks in MATLAB/SIMULINK environment

  1. Tez No: 929958
  2. Yazar: MERVE İLHAN ZENGİNAL
  3. Danışmanlar: PROF. DR. UĞUR ARİFOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2025
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 141

Özet

Tüketiciye ulaşan enerjinin kaliteli ve kesintisiz olması enerji üreticilerinin temel hedeflerindendir. Güç elektroniği elemanlarının yaygın kullanımı ve bu elemanların doğası gereği yüksek frekansta anahtarlama yapmaları, ayrıca doğrusal olmayan yük karakteristiği göstermeleri kalite problemlerini oluşturmaktadır. Bu noktada doğrusal olmayan yükler içeren cihazların kullanımı elektrik güç sistemlerinde akım ve gerilim harmoniklerinin oluşmasına neden olur. Oluşan bu harmonikler hem güç dağıtım sistemlerine hem de cihazlara zarar vermektedir. Bu nedenle harmoniklerin giderilmesi ve izin verilen standartlara getirilmesi gerekmektedir. Harmoniklerin bastırılmasının ilk adımı tasarım aşamasında alınabilecek önlemlerdir. Ancak bu önlemler çoğu zaman tahminlenemeyen sistem koşulları yüzünden yetersiz kalmaktadır. Sonuç olarak sonradan oluşan harmonikler filtreler kullanılarak yok edilebilir. Harmonik eliminasyon işlemleri farklı filtreleme yöntemleri ile yapılmaktadır. Bu yöntemlerden pasif filtreler değişen yük durumlarına karşı sabit kalması ve şebeke veya yük ile rezonansa girmesi problemi yüzünden tercih edilmemektedir. Aktif filtreler günümüzde sık kullanılmaya başlayan filtre çeşitleridir ancak burada da tasarım zorluğu ve maliyet ön plana çıkmaktadır. Son yıllarda özellikle karmaşık sorunların çözümü için yapay sinir ağlarının (YSA) kullanımı yaygın hale gelmiştir. Harmonik analizi de karmaşık matematiksel işlemler içermekte olup bu çalışmada harmoniklerin bastırılması için çeşitli YSA yöntemlerine dayanan Paralel Aktif Güç Filtresi (PAGF) önerilmiştir. PAGF, literatürde en çok kullanılan 3 fazlı 4 telli bir sistemde p-q teorisine göre tasarlanmıştır. Gerilim düzenleyici olarak PI kontrol tekniği, akım denetleyici olarak ise histerezis bant kontrolü kullanılmıştır. YSA modellerinden çok katmanlı algılayıcı (Multilayer Perceptron- MLP), Elman sinir ağı ve tekrarlayan sinir ağı (RNN) modelleri ile filtre uyarlaması yapılmıştır. Eğitim algoritması olarak Levenberg-Marquardt (LM) ve Ölçekli Eşlenik Gradyan (SCG) yöntemleri kullanılmıştır. Aktivasyon fonsiyonu olarak da sigmoid fonksiyonu seçilmiştir. Gizli katman sayısı ve nöron sayısı değiştirilerek karşılaştırmalar yapılmıştır. Bütün sistem Matlab/Simulink ortamında oluşturulmuştur. Sonuç olarak anlık reaktif güç teorisi (p-q) ile tasarlanan PAGF ile harmoniklerin ciddi oranda bastırıldığı gözlemlenmiştir. Buna karşılık YSA tabanlı sistem çok daha iyi sonuçlar vermiş ve uygulanabilirliği test edilmiştir. En iyi YSA modeli ise iki gizli katman içeren Elman sinir ağı ve en iyi eğitim algoritması ise ölçekli eşlenik gradyan olarak belirlenmiştir.

Özet (Çeviri)

Delivering electricity to consumers in a high-quality and uninterrupted manner has been a fundamental goal for energy producers. However, the widespread use of power electronics elements and their non-linear load characteristics lead to the formation of harmonics in electrical systems. Harmonics are defined as distortions in current and voltage waveforms. These distortions originate from elements such as transformers, generators, arc furnaces, uninterruptible power supplies, static VAr compensators, computers, and converters. The adverse effects of harmonics can be summarized as energy loss, overloading of system components, resonance events, and early failure of devices. These issues, particularly in industrial applications, result in significant costs and efficiency losses. Therefore, it is necessary to eliminate harmonics and bring them within permissible standards. The first step in suppressing harmonics is to take precautions during the design phase. However, these precautions are often insufficient due to unpredictable system conditions. As a result, harmonics that form later can be eliminated using filters. Harmonic elimination is performed through various filtering methods, primarily categorized into two types: passive and active filters. The primary principle of passive filters is not to eliminate harmonics but to provide a path for harmonics to flow to the ground line. The primary principle of active filters, on the other hand, is to detect harmonics in the system and generate a wave with the same frequency and amplitude but in the opposite direction to cancel out the harmonics. As can be understood from these principles, passive filters are only effective under the specific conditions for which they are designed, while active filters can dynamically respond to varying harmonic waves under changing conditions. Both methods have their areas of application, and the most appropriate type of filter is determined by evaluating criteria such as system conditions, ease of application, cost, and control mechanisms. Passive filters are created by combining basic circuit elements such as resistors (R), inductors (L), and capacitors (C) in various configurations. These filters do not eliminate harmonics but merely redirect harmonic currents, preventing them from reaching undesired locations. Their working principle involves determining L and C values that will resonate at the harmonic frequency to be suppressed. Passive filters are advantageous due to their ease of application, practicality, and low cost. However, their disadvantages include large size, lack of adaptability to changing load conditions, and potential resonance with the grid or load. Active filters generate a wave with the same frequency and amplitude but in the opposite direction (180 degrees) to the harmonic component in the current or voltage waveform using switching elements, thereby eliminating the harmonic component. In addition to harmonic elimination, they also provide reactive power compensation and neutral current compensation, addressing power quality problems. They are generally designed as three-phase three-wire or three-phase four-wire systems. However, their high cost and design complexity are significant disadvantages. It is also possible to use passive and active filters together in filtering. A method in which series active filters and parallel active filters are combined is called a unified power quality conditioner. This type of filter combines the voltage-side compensation and grid harmonic isolation features of series active filters with the harmonic current and reactive power compensation features of parallel active filters, maintaining the current and voltage waveforms as perfect sine waves. This comprehensive capability addresses almost all issues that may arise in power systems. However, it is highly costly and has a complex design. The combination of an active filter with a passive filter is referred to as a hybrid filter. This method is more commonly preferred in the market. Especially, the series active filter-parallel passive filter combination stands out with its low cost and high performance. Active filters respond dynamically to the system using switching elements. These switching elements require signals for their on-off states. These signals are generated using techniques such as PWM, sliding mode, fuzzy logic-based control, and hysteresis band control. These techniques require reference signals. At this point, generating reference signals becomes one of the most critical aspects of active filter design. Techniques such as frequency domain methods, time domain methods, and instantaneous reactive power theory are used to generate these signals. Each method has advantages in specific scenarios, and the appropriate method can be selected based on system requirements. In this study, a design based on the instantaneous reactive power theory was implemented. The fundamental principle of this theory involves converting three-phase voltages and currents into a two-phase stationary αβ structure for calculations, then obtaining reference signals through reverse transformation. Filtering methods developed to effectively suppress harmonics play a critical role in improving energy quality. Parallel active power filters, which stand out as a dynamic and effective method, have become a focus of researchers to explore whether they can be simplified with artificial neural network (ANN)-supported solutions. ANNs learn from examples and do not rely on specific algorithms. Their primary principle is to learn the relationship between inputs and outputs from examples provided to the network and produce outputs for new inputs. Their advantages include not requiring mathematical algorithms, possessing learning capabilities, solving problems that are difficult or impossible to model, needing only examples for modeling, effectively addressing non-linear problems, quickly reaching results, and being easily retrained after system changes. These features have led to the rapid development and attention of ANNs. This study examined the design of a parallel active power filter integrated with an ANN and presented it as an effective method. Different ANN models were designed and simulated in Matlab/Simulink. The aim of the study was to train an ANN to replace the filter. Thus, the filter inputs source voltages Vsa, Vsb, Vsc , load currents iya, iyb, iyc and ploss were also used as inputs for the ANN. The filter outputs, reference filter currents i*fa, i*fb, i*fc served as ANN outputs. The ANN was designed with seven inputs and three outputs. Data was collected from 60 harmonic waves, with 200,000 samples taken from a single harmonic wave. The output values in the dataset ranged between -50 and +50. Given the presence of negative values, normalizing the data between -1 and +1 was a logical approach for the ANN. Consequently, the activation function was chosen as tangent sigmoid. The training algorithms used were Levenberg-Marquardt (LM) and scaled conjugate gradient (SCG), primarily due to the dataset's size and the predictive nature of the problem. For ANN training, 80% of the dataset was allocated for training, and 20% for testing. The learning rate was set at 0.001. During training, both the number of hidden layers and neurons were adjusted through trial and error, and results were compared using MAE, MSE, and RMSE as performance criteria. The first scenario involved one hidden layer with five neurons and the SCG training algorithm. The second scenario used one hidden layer with five neurons and the LM training algorithm. The third scenario employed two hidden layers with 20 neurons each and the SCG algorithm. For the RNN model, an LSTM-based architecture was used, with 200 hidden layers, a learning rate of 0.001, and 100 epochs. For the unfiltered model, the THD value was 29.84%. Using the p-q method with the parallel active power filter, the THD value was reduced to 3.58%, indicating a significant improvement. However, ANN-based parallel active power filters yielded even better results. For the Elman network, the THD values were 3.03%, 3.32%, and 2.56% for the first, second, and third scenarios, respectively. For the MLP network, the THD values were 3.23%, 3.53%, and 2.88% for the respective scenarios. For the LSTM-based RNN, the THD value was 3.46%. The results demonstrated that the best performance was achieved with the Elman neural network model with two hidden layers. This model provided a dynamic control mechanism for effectively suppressing harmonics and improved the adaptability of energy systems to various conditions. Additionally, the SCG algorithm showed faster and more effective training performance compared to the LM algorithm. ANN-based systems are expected to be widely used in future energy system designs for harmonic elimination. This thesis has demonstrated the effectiveness of ANN-based harmonic control solutions and their applicability in energy systems. It is recommended that future studies combine different artificial intelligence models and optimization techniques to develop new approaches for harmonic control. These methods are expected to enhance energy efficiency and optimize costs.

Benzer Tezler

  1. Değişken yük durumunda paralel aktif güç filtresinin uyarlamalı yapay sinir ağları ile denetimi

    Adaline neural networks based shunt active power filter control under varying load condition

    BARAN HEKİMOĞLU

    Doktora

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik MühendisliğiKocaeli Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. NURETTİN ABUT

  2. Nonlinear parameter estimation of a universal motor by q-adaptive neural networks

    Doğrusal olmayan evrensel motor parametrelerinin q-uyarlamalı sinir ağı yöntemi ile tanılanması

    ZEYNEP MÜGE AKYÜREK

    Yüksek Lisans

    İngilizce

    İngilizce

    1999

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Sistem ve Kontrol Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN S. TÜRKAY

  3. Identification and control of nonlinear dynamical systems using neural networks

    Doğrusal olmayan dinamik sistemlerin yapay sinir ağları ile tanınması ve denetimi

    MEHMET ÖNDER EFE

  4. A model based flight control system design approach for micro aerial vehicles using integrated flight testing and hil simulations

    Küçük boyutlu insansız hava araçları üzerinde sistem tanılama, uçuş kontrol sistem tasarımı ve donanım ile benzetim uygulamaları

    BURAK YÜKSEK

    Doktora

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. GÖKHAN İNALHAN

  5. Çok düzeyli statik bellek gözesi ve kohonen türü yapay sinir ağına uygulanması

    Multiple valued static storage cell and its application to kohonen type neural network

    NURETTİN YAMAN ÖZELÇİ

    Doktora

    Türkçe

    Türkçe

    1999

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. UĞUR ÇİLİNGİROĞLU