Düşük nitrifikasyon hızının ileri biyolojik atık su arıtma tesisi azot giderim performansına etkisi
Effect of low nitrification rate on nitrogen removal performance of advanced biological wastewater treatment
- Tez No: 931166
- Danışmanlar: PROF. DR. HAYRETTİN GÜÇLÜ İNSEL
- Tez Türü: Yüksek Lisans
- Konular: Çevre Mühendisliği, Environmental Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Çevre Bilimleri, Mühendisliği ve Yönetimi Bilim Dalı
- Sayfa Sayısı: 119
Özet
Atık su arıtma tesisleri, evsel veya endüstriyel atık suların çevre kalitesini koruyarak belirlenen kirlilik standartlarının altına indirilmesini ve alıcı ortama deşarjını sağlayan tesislerdir. Bu tesisler, atık sulardaki katı ve organik maddelerin fiziksel ve kimyasal yöntemlerle uzaklaştırılmasını sağlar. Ardından, suyun biyolojik olarak arıtılması ve dezenfekte edilmesiyle tekrar kullanılabilir hale getirilir. Atık su arıtma tesisleri, çevreyi korumak, su kaynaklarını yeniden kullanmak ve toplum sağlığını korumak amacıyla kritik bir role sahiptir. Atık su arıtma tesislerinde modelleme, tasarımın verifikasyonu, tesis verimliliği artırmak ve kaynakları etkin bir şekilde kullanmak için kritik öneme sahiptir. Bu modeller biyolojik ve kimyasal proseslerin dahil edildiği tesisin bütününün performansını hesaplayan sistemlerdir. Günümüzde modelleme, atık su arıtma tesislerinde su akışları ve biyokimyasal reaksiyonların simülasyonuyla, optimizasyon ve kapasite planlaması yapılmasını sağlar. Ayrıca, mevcut bir tesisin performansının sıcaklık gibi çevresel faktörler de dikkate alarak değerlendirilmesinde modelleme programları yaygın olarak kullanılabilmektedir. Geçen yıllarda yaşadığımız Marmara Denizi müsilaj problemi atık sulardan biyolojik azot gideriminin önemini bir kere daha bizlere hatırlatmıştır. Nitrifikasyon, biyolojik azot giderimi için kritik bir proses olup, bu süreçteki nitrifikasyon yapan gerçek bakterilerin çoğalma ve ölüm hızları kentsel atık su arıtma tesislerinin azot giderim performanslarını doğrudan etkilemektedir. Özellikle sıcaklık etkisi incelenmelidir. Aktif çamur tanklarında nitrifikasyon yapan bakterilerin yetersizliği durumunda, azot giderim veriminin düşebileceği öngörülmektedir. Bu çalışmada, ülkemizde faaliyet gösteren, Marmara Bölgesi'nde bulunan ve ATV-DVWK tasarım standardı kullanılarak tasarlanmış büyük kapasiteli bir İleri Biyolojik Atık Su Arıtma Tesisi'nin çıkış amonyum azotu konsantrasyonunun sıcaklık değişimine ve günlük yüklere bağlı dinamik simülasyonu gerçekleştirilmiştir. Simülasyon yardımıyla nitrifikasyon yapan bakterilerin büyüme hızı, ölüm hızı gibi kinetik parametrelerin nitrifikasyon performansına etkisi değerlendirilmiştir. Daha önce laboratuvar koşullarında ölçülen nitrifikasyon hızının büyük ölçekli tesisin dinamik azot giderim performansının ortaya konmasındaki yeterliliği analiz edilmiştir. Simülasyon çalışmalarında Avrupa'daki örneklerine göre nitrifikasyon hızının düşük kaldığı; ATV-DVWK tasarım standardı ile tasarlanmış bir tesisin aerobik çamur yaşının yetersiz kaldığı ve sonuç olarak tesisin ancak proses sıcaklığı yükseldiği zaman nitrifikasyonu gerçekleştirebildiği modellenmiştir.
Özet (Çeviri)
Wastewater treatment plants are the facilities that ensure that domestic or industrial wastewater is reduced below the pollution standards determined by protecting the environmental quality and discharged to the receiving water. These facilities ensure the removal of solid and organic substances in wastewater by physical and chemical methods. Then, the water is made reusable by biological treatment and disinfection. Wastewater treatment plants have a critical role in protecting the environment, reusing water resources and protecting public health. Modelling in wastewater treatment plants is critical for design verification, improving plant efficiency and using resources effectively. These models are systems that calculate the performance of the entire plant including biological and chemical processes. Today, modelling enables optimisation and capacity planning in wastewater treatment plants by simulating water flows and biochemical reactions. In addition, modelling programmes can be widely used to evaluate the performance of an existing plant by taking into account environmental factors such as temperature. The Marmara Sea mucilage problem we have experienced in recent years has once again reminded us of the importance of biological nitrogen removal from wastewater. Nitrification is a critical process for biological nitrogen removal, and the growth and death rates of nitrifying bacteria in this process directly affect the nitrogen removal performance of urban wastewater treatment plants. Especially temperature effect should be analysed. In case of insufficiency of nitrifying bacteria in activated sludge tanks, it is predicted that nitrogen removal efficiency may decrease. This study focuses on the modeling and optimization of biological nitrogen removal processes in wastewater treatment plants. Simulation analyses were conducted to investigate the impacts of different growth rates (μA) and decay rates (bA) on total nitrogen removal, emphasizing the critical role of these parameters on plant performance. The modeling process was based on data collected from an operational wastewater treatment plant located in the Marmara Region, utilizing Sumo software for simulation. By comparing actual operational results with simulation outputs, the study revealed that optimizing kinetic parameters during the modeling process could enhance nitrogen removal performance. This finding underscores the importance of modeling studies in improving process optimization and plant efficiency. The simulation results highlighted the significant effects of growth rate (μA) and decay rate (bA) on nitrogen removal optimization. The findings demonstrated that low growth rates limit biological activity, while high decay rates lead to active biomass loss. Adjusting kinetic parameters during modeling enabled better-than-actual plant performance, identifying more efficient operational conditions. Additionally, temperature variations and their effects on nitrification and denitrification processes were carefully assessed. It was observed that higher temperatures enhance the activity of nitrifying bacteria, with nitrification potential being particularly beneficial during summer months. Consequently, temperature control was identified as a critical factor for improving nitrogen removal efficiency. The study showed that the growth rate has a substantial impact on nitrogen removal performance. At a growth rate of 1.2 day⁻¹, the highest efficiency in biological nitrogen removal was achieved. However, the system also exhibited stable and effective performance within the range of 0.4–0.6 day⁻¹. In contrast, at lower growth rates (e.g., 0.2 day⁻¹), biological activity was insufficient, resulting in effluent nitrogen concentrations exceeding target values. The simulation results further demonstrated that increasing decay rates negatively affected biological nitrogen removal processes. Higher decay rates reduced active biomass levels, diminishing the efficiency of nitrification and denitrification processes. At decay rates exceeding 0.18 day⁻¹, significant decreases in total nitrogen removal performance were observed, while lower decay rates (e.g., 0.10 day⁻¹) resulted in more effective biological processes and effluent nitrogen concentrations closer to target levels. Temperature variations also played a crucial role in nitrification efficiency. Nitrogen removal performance significantly decreased when temperatures dropped below 15°C, reaffirming the critical importance of temperature control in plant operations. A comparison between plant data and simulation results showed that optimizing modeling parameters could align effluent nitrogen levels with target values. Growth rates minimizing discrepancies between actual data and model outputs were used to determine optimal operational ranges for enhanced plant performance. The study provided valuable insights into the optimization of biological nitrogen removal. It emphasized the importance of balancing growth and decay rates and understanding the influence of environmental factors such as temperature on process efficiency. These findings contribute to both the environmental and economic sustainability of wastewater treatment processes. Moreover, the thesis involved a comprehensive simulation model to optimize the biological nitrogen removal performance of a treatment plant in the Marmara Region, integrating real plant data with literature-based insights. The identified autotrophic growth rate (μA: 0.43 day⁻¹) and decay rate (bA: 0.17 day⁻¹) aligned with the plant's effluent nitrogen levels. However, the calculated aeration tank volume (351,925 m³) covered only 68% of the existing tank volume (240,000 m³), indicating insufficient capacity for optimizing biological nitrogen removal. The growth rate calculated for the Marmara Region plant (μA: 0.43 day⁻¹) was found to be lower than those observed in similar facilities in Europe (1.0–1.6 day⁻¹), suggesting the need for improved nitrification performance. Insufficient capacity resulted in challenges such as inadequate oxygen transfer, process imbalances, and high sludge concentrations. To enhance nitrogen removal performance, the study recommended expanding the aeration tank volume to the calculated optimum of 351,925 m³. Additional strategies included implementing automated control systems to improve oxygen transfer efficiency, supplementing carbon sources, and optimizing biological balances. Regular monitoring of sludge age and process modifications to support autotrophic bacterial activity were also deemed crucial. Exploring alternative treatment technologies, such as membrane bioreactors, was suggested as a potential solution. In conclusion, this study demonstrated the potential of integrating modeling with real plant data to optimize wastewater treatment processes. The results provided actionable strategies for an example plant in the Marmara Region, serving as a guide for achieving sustainable and efficient operational conditions in similar facilities. In this study, dynamic simulation of the effluent ammonium nitrogen concentration of a large capacity Advanced Biological Wastewater Treatment Plant operating in our country and designed using the ATV-DVWK design standard was carried out depending on temperature variation and daily loads. The adequacy of the nitrification rate previously measured under laboratory conditions to demonstrate the dynamic nitrogen removal performance of the large-scale plant was analysed. In the simulation studies, it was modelled that the nitrification rate was low compared to the European examples; the aerobic sludge age of a plant designed with ATV-DVWK design standard was insufficient and as a result, the plant could only perform nitrification when the process temperature increased.
Benzer Tezler
- Uncertainty analysis in the measurement of nitrification kinetics in urban wastewater treatment plants in Türkiye
Türkiye'de kentsel atıksu arıtma tesislerinde nitrifikasyon kinetiği ölçümünde belirsizlik analizi
BERKER LEBLEBİCİ
Yüksek Lisans
İngilizce
2024
Biyoteknolojiİstanbul Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
PROF. DR. EMİNE ÇOKGÖR
- Simulation based optimization of aeration in carousel reactors for securing new EU discharge regulations
Yeni AB deşarj yönetmeliklerinin güvence altına alınması için karusel reaktörlerde havalandırmanın simülasyon tabanlı optimizasyonu
IRMAK ÖZDEMİR
Yüksek Lisans
İngilizce
2024
Çevre Mühendisliğiİstanbul Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
PROF. DR. HAYRETTİN GÜÇLÜ İNSEL
- Effect of non steroidal anti-inflamatory drugs on microbial kinetics and population
Steroid yapıda olmayan antienflamatuvar yapıdaki ilaçların mikrobiyal kinetiğe ve populasyona etkisi
ESRA SALİH
- Respiration inhibition test: A Modified method for priority pollutants
Başlık çevirisi yok
SERTAÇ TOKTA
- Arıtma çamurlarının aerobik kompostlama ve çürütme prosesleri
Aerobic composting and digestion processes of treatment sludges
NEVİM GENÇ
Doktora
Türkçe
1999
Çevre MühendisliğiOndokuz Mayıs ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
PROF. DR. A. NUR ONAR