Geri Dön

Optimal decision-making for operations of smart grids and microgrids

Başlık çevirisi mevcut değil.

  1. Tez No: 958323
  2. Yazar: KÜBRA NUR ŞAHİN
  3. Danışmanlar: DOÇ. DR. MUHAMMED SÜTÇÜ
  4. Tez Türü: Doktora
  5. Konular: Enerji, Energy
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2025
  8. Dil: İngilizce
  9. Üniversite: Abdullah Gül Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Endüstri Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 122

Özet

Yenilenebilir enerji kaynaklarının artan entegrasyonu ve elektrik üretiminin merkeziyetsizleşerek dağıtık hale gelmesi, güç sistemlerinde koordinasyon ve sistem güvenilirliği açısından önemli zorlukları beraberinde getirmiştir. Bu çalışma, akıllı enerji toplulukları için, olasılıksal modelleme, merkezî optimizasyon ve uyarlanabilir kontrol yaklaşımlarını bir araya getiren çok katmanlı bir metodolojik çerçeve sunmaktadır. İlk aşamada, meteorolojik değişkenler arasındaki karmaşık doğrusal olmayan ilişkileri modelleyebilen ve rüzgâr enerjisi potansiyelini belirsizlik altında değerlendirebilen, kopula teorisi, derin öğrenme ve karar ağaçlarını birleştiren hibrit bir yöntem geliştirilmiştir. İkinci aşamada, farklı hane yapılarını içeren bir şebekede, dağıtık enerji kaynaklarının zamanlaması ve eşler arası (P2P) enerji ticaretinin optimizasyonu için Karışık Tamsayılı Doğrusal Programlama (MILP) tabanlı model tasarlanmıştır. Son aşamada ise, kural tabanlı karar verme yapısı, Derin Deterministik Politika Gradyanı (DDPG) algoritması ile geliştirilerek, gerçek zamanlı fiyatlandırma ve merkezsiz karar alma yeteneklerine sahip bir operasyonel kontrol ortamı oluşturulmuştur. Geliştirilen model, değişken sistem koşullarına uyum sağlamakta, enerji yönetimini optimize etmekte ve belirsizlik altında uzun vadeli sistem performansını artırmaktadır. Bu çalışma, enerji sistemlerinde kaynak değerlendirmesinden operasyonel kontrole uzanan; deterministik planlamayı gerçek zamanlı, öğrenen yapılarla bütünleştiren kapsamlı bir karar destek mimarisi sunmaktadır. Elde edilen bulgular, dağıtık yenilenebilir kaynakların entegrasyonunu destekleyen, esnek, dayanıklı ve sürdürülebilir enerji sistemlerinin geliştirilmesine katkı sunmaktadır.

Özet (Çeviri)

The rising adoption of renewable energy sources and decentralized electricity production has introduced new challenges in power system coordination, uncertainty management, and reliability. This study presents a multi-stage framework combining probabilistic modelling, centralized optimization, and adaptive control for smart energy communities. First, a hybrid model integrating copula theory, deep learning, and decision trees is developed for probabilistic wind energy assessment. Second, a Mixed-Integer Linear Programming (MILP) model is formulated to optimize distributed energy resource scheduling and peer-to-peer (P2P) energy trading across various household types. Finally, a rule-based control environment is extended with a Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm to enable real-time pricing and decentralized decision-making. The proposed model adapts to dynamic conditions, optimizes energy dispatch, and improves long-term system performance under uncertainty. Collectively, this study introduces an integrated paradigm that combines resource evaluation, system optimization, and adaptive control. The findings highlight the potential for intelligent energy management to enhance grid flexibility, encourage decentralized operation, and facilitate the transition towards sustainable and resilient power systems.

Benzer Tezler

  1. An optimal energy management system for sustainable city based on renewable energy sources

    Sürdürülebilir şehir için yenilenebilir enerji kaynaklarına dayalı en uygun enerji yönetim sistemi

    MOHAMED ALI H. ELWEDDAD

    Doktora

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiKarabük Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMET TAHİR GÜNEŞER

  2. Blokzinciri ve yapay zekâ teknolojisi ile elektrik dağıtım şebekesine tüketici bağlantı taleplerinin değerlendirilmesi

    Evaluation of consumer connection demand to the electricity distribution network using blockchain and artificial intelligence technology

    MUHAMMET YEMEN BOYACI

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik MühendisliğiVan Yüzüncü Yıl Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. DOĞAN ÇELİK

  3. Güç transformatörleri sfra tarama frekans cevabı analizi sonuçlarının yapay zeka uygulamaları ile karşılaştırılması

    Comparison of power transformer sfra sweep frequency response analysis results with artificial intelligence applications

    HAKAN ÇUHADAROĞLU

    Doktora

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik MühendisliğiSakarya Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. YILMAZ UYAROĞLU

  4. 2-step indoor localization for 'smart AGVs'

    'Akıllı AGV'ler' için iki aşamalı iç mekan konumlama yaklaşımı

    ABDURRAHMAN YILMAZ

    Doktora

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN TEMELTAŞ

  5. Dağıtık üretim sistemlerinin akıllı şebekeler üzerine etkilerinin incelenmesi

    Examination of the effects of distributed generation on smart grids

    MİKAİL PÜRLÜ

    Doktora

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. BELGİN TÜRKAY