Beton üretiminde metal atık tozlarının çimento ikamesi olarak kullanılması üzerine bir araştırma
Utilization of metal waste powders as partial cement replacement in concrete production
- Tez No: 958322
- Danışmanlar: DOÇ. DR. MEHMET SERKAN YATAĞAN
- Tez Türü: Yüksek Lisans
- Konular: Mimarlık, Architecture
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Mimarlık Ana Bilim Dalı
- Bilim Dalı: Yapı Bilimleri Bilim Dalı
- Sayfa Sayısı: 159
Özet
Bu tez çalışmasında, sürdürülebilir inşaat malzemeleri üretimi kapsamında, çimento üretiminin çevresel etkilerini azaltma hedefiyle, metal atık tozlarının beton üretiminde çimentoya ikame malzeme olarak kullanılabilirliği araştırılmıştır. Son yıllarda hızlı kentleşme, altyapı ihtiyacının artması ve yapılaşma faaliyetlerinin hız kazanması, dünya genelinde beton tüketimini önemli ölçüde arttırmıştır. Bunun doğal bir sonucu olarak da çimento üretimi artmış ve bu süreçte ortaya çıkan yüksek enerji tüketimi ile karbon salımı, çevresel anlamda ciddi sorunlara yol açmıştır. Çimento üretimi, küresel karbon emisyonlarının önemli bir kısmını oluşturmakta ve doğal kaynakların tükenmesine neden olmaktadır. Bu durum, çevreye duyarlı alternatif bağlayıcı malzeme arayışlarını gerekli kılmıştır. Çalışmada bu doğrultuda, endüstriyel üretim atığı olan alüminyum oksit, çinko oksit ve kolemanit tozları, çimentonun kısmen yerine geçebilecek alternatif malzeme olarak değerlendirilmiştir. Bu malzemelerin kullanılması, hammadde tüketimini azaltarak çevresel sürdürülebilirliğe katkıda bulunmaktadır. Ayrıca, bu yaklaşım ekonomik açıdan da beton üretim maliyetlerini düşürme potansiyeline sahiptir. Tez kapsamında ilk olarak literatür taraması yapılmış; bağlayıcı malzemeler, çimento türleri, puzolan özellikleri, betonun mekanik ve fiziksel özellikleri ile çevresel etkileri detaylı bir şekilde incelenmiştir. Daha sonra deneysel aşamada, metal atık tozlarının farklı oranlarda çimentoya ikame edildiği beton karışımları hazırlanarak performans analizleri gerçekleştirilmiştir. Deneyler, kontrol betonu, alüminyum oksit ikameli beton, çinko oksit ikameli beton ve kolemanit ikameli beton olmak üzere dört ana grup üzerinden yürütülmüştür: Uygulanan deneyler, taze beton deneyleri (birim hacim ağırlık, işlenebilirlik) ve sertleşmiş beton deneyleri (basınç dayanımı, eğilme dayanımı, statik elastisite modülü, kılcal su emme, ağırlıkça su emme ve görünür porozite) olmak üzere iki ana başlık altında toplanmıştır. Sonuçlar, belirli oranlarda kullanılan metal atık tozlarının betonun dayanım ve dayanıklılık özelliklerini olumsuz etkilemediğini, bazı durumlarda iyileştirdiğini göstermiştir. Bu veriler ışığında içeriğine %10 kolemanit ve alüminyum oksit metal atık tozlarının ikame edilmesiyle oluşturulan çimentolarla üretilen betonların, taşıyıcı malzeme olarak kullanılmasının uygun olduğu görülmektedir. Sahip oldukları dayanım değerleri sebebiyle, taşıyıcılık sınıfına girmeyen diğer numunelerin de fiziksel ve mekanik özellikleri göz önünde bulundurularak, bu metal atık tozlarının sıva ve harç üretiminde, çimento ikamesi olarak kullanılmasının uygun olduğu düşünülmektedir. Aynı zamanda kolemanit ikamesinin betonun fiziksel özelliklerini iyileştirmesi sebebiyle, kullanım yerleri için öneriler sunulmuştur. Genel olarak, bu tez çalışması, metal içerikli endüstriyel atıkların çimento yerine kullanılabileceğini ortaya koyarak, sürdürülebilir yapı malzemeleri geliştirilmesine yönelik önemli katkılar sunmuştur. Gelecekte yapılacak daha kapsamlı araştırmalara da temel teşkil etmesi beklenmektedir.
Özet (Çeviri)
In a globalizing world, the excessive and unconscious use of natural resources required for industrialization and urbanization has led to a continuous increase in waste generation. Recycling, which involves the reprocessing, reproduction, and reuse of previously collected materials, has gained substantial importance in today's world (Gündüzalp & Güven, 2016). Population growth, increasing urbanization, rising living standards due to technological advancements, and activities related to industry, mining, domestic use, and agriculture have contributed to both the quantity and diversity of solid wastes. In the mining sector, excluding overburden/waste rock, the amount of waste increased from 17.3 million tons in 2018 to 27.6 million tons in 2020 (Url 1, 2021). This increase underlines the necessity of intensifying efforts in the field of recycling. Given that industrial raw materials are finite natural resources and considering that consumption will rise with the growing global population, many raw material sources are expected to deplete within the next century. Thus, the potential use of metal-based wastes in the construction sector has become increasingly significant, both in terms of waste reduction and as an alternative source of raw materials. Within the scope of sustainability, this issue requires focused attention. Sustainability can be defined as the ability to endure over time. In ecological terms, it refers to the preservation of biological systems' diversity, productivity, and continuity (Demirel et al., 2015). Sustainable development, on the other hand, refers to a mode of achieving economic growth and increased welfare levels while preserving the environment and improving human quality of life (Demirel et al., 2015). Since the early 20th century, concrete has become one of the most essential and widely used materials in the construction industry. However, the concrete industry continues to face challenges in terms of environmental impact, durability, and sustainability from scientific, engineering, and societal perspectives. The consumption of materials and energy is carried out in a manner that contributes significantly to global warming (Arıoğlu et al., 2004). In terms of percentages within the construction sector, 50% of raw materials are extracted from nature, 40% of total energy is consumed, and 50% of total waste is generated by this sector (Durmuş et al., 2008). Due to the adverse environmental effects of concrete after use, it is not considered an environmentally friendly building material. In the context of sustainable development, there is a growing necessity to utilize recycled materials more efficiently. Proper use of recycled materials can also reduce the destructive impact of concrete on natural resources (Durmuş et al., 2008). A large proportion of the additives used in cement production are pozzolanic materials. These are siliceous or aluminous substances that, while not possessing binding properties on their own, can react with calcium hydroxide in moist environments at normal temperatures when finely ground, forming compounds with cementitious properties (ASTM C 618, 1991). Pozzolans are classified into two main groups: natural and artificial. Natural pozzolans include materials of volcanic origin such as volcanic ash, pumice, and tuff, as well as siliceous sedimentary deposits like diatomite. Artificial pozzolans are typically waste materials or thermally processed substances such as silica fume, fly ash (FA), and ground granulated blast furnace slag (GGBFS), or clay and shale subjected to thermal treatment (Aruntaş, 1996). Most artificial pozzolans are composed of fly ash produced by coal-fired power plants (Rudolf, 1984). Pozzolans do not harden when mixed with water like cement clinker but form water-insoluble compounds with binding properties in the presence of calcium hydroxide and water. In mixtures of cement and pozzolan, calcium hydroxide originates from the cement (Rudolf, 1984). As is well known, cement is the most expensive component used in concrete production. The technical characteristics and quantity of cement significantly affect both the performance and economy of concrete. Therefore, pozzolanic materials are added to concrete either directly as admixtures or as partial cement replacements to reduce costs and improve various properties (Aruntaş, 1996). This thesis aims to investigate alternative binding materials that can be used in concrete production in place of cement to reduce the environmental impacts of increasing cement production. In this context, the use of pozzolanic industrial waste materials as alternative binders in concrete production is considered a promising approach both environmentally and economically. Accordingly, this thesis investigates the usability of three different metal oxide powders—aluminum oxide (Al₂O₃), zinc oxide (ZnO), and colemanite (Ca₂B₆O₁₁·5H₂O)—as partial replacements for cement in concrete production. The pozzolanic activities, specific gravities, and effects on the mechanical and physical properties of concrete were analyzed through comprehensive experimental methods. These materials were selected because of their potential environmental harm as industrial waste and their reactivity in pozzolanic reactions. The study aims to contribute to recycling-based approaches by incorporating these wastes into the economy, minimizing their environmental release, and improving the technical properties of concrete. The initial sections of the thesis present an extensive literature review on the historical development of binding materials, classification of pozzolans, basic properties of concrete, types of cement, pozzolanic reaction mechanisms, environmental impacts, and sustainability principles. Both natural and artificial pozzolans were evaluated, with a particular focus on the effects of fly ash, GGBFS, and silica fume on concrete. The limited number of studies in the literature regarding the use of metal oxide-based industrial waste powders as cement substitutes in concrete increases the scientific originality of this research. Especially, the integration of colemanite—abundantly found in Turkey—into concrete technology offers strategic potential in terms of local resource utilization. The experimental studies were conducted at the Building Materials Laboratory of the Faculty of Architecture at Istanbul Technical University. Preliminary tests were first carried out to determine the properties of the materials. Following these, four main types of concrete were prepared within the experimental plan: control concrete, aluminum oxide-substituted concrete, zinc oxide-substituted concrete, and colemanite-substituted concrete. Cement was partially replaced at 10%, 20%, 40%, and 50% levels for each group. Tests were performed on both fresh and hardened concrete, including slump flow, unit weight, capillary water absorption, water absorption by weight, apparent porosity, flexural strength, compressive strength, and static modulus of elasticity. The findings revealed that metal waste powders, at specific substitution levels, did not adversely affect the technical properties of concrete—in fact, in some cases, they improved them. Particularly, concrete mixtures with 10% substitution of aluminum oxide and colemanite exhibited performance comparable to or better than the control samples in terms of compressive and flexural strength. Acceptable mechanical strength values were also obtained at 20% substitution, whereas noticeable reductions were observed at 40% and 50% levels. These results suggest that partial replacement, rather than complete substitution, is more appropriate. Colemanite was found to significantly improve the physical properties of concrete, such as impermeability and water absorption. Aluminum oxide positively influenced workability and the modulus of elasticity. Although zinc oxide had limited positive effects on mechanical strength, it was effective in enhancing impermeability. Fresh concrete tests indicated that although mixtures containing metal oxide powders remained within workable limits, higher replacement ratios led to reduced workability. In hardened concrete tests, especially with 10% colemanite addition, significant reductions in 28-day capillary water absorption and apparent porosity were observed—an important advantage for outdoor concrete exposed to water. Flexural strength tests showed that aluminum oxide enhanced tensile behavior, particularly within the 10–20% range. In compressive strength tests, colemanite provided more stable performance, while zinc oxide decreased strength with increasing dosage. Similar trends were observed in modulus of elasticity values, with aluminum oxide and colemanite contributing positively to elastic behavior. Pozzolanic activity tests were conducted according to TS 25 standards, and the 7-day compressive strengths were determined as 6.20 N/mm² for aluminum oxide, 4.21 N/mm² for colemanite, and 1.00 N/mm² for zinc oxide. These results indicate that aluminum oxide and colemanite exhibit higher pozzolanic potential compared to zinc oxide. Specific gravity tests revealed that the metal oxide powders had lower specific gravity than cement, thereby reducing the density of fresh concrete at higher replacement levels. Replacing cement with these industrial waste powders in concrete production provides not only environmental sustainability but also economic benefits. Since cement is the most costly component in concrete, any alternative material helps reduce production costs. Moreover, the use of such materials is expected to lower waste disposal costs and minimize environmental harm. Therefore, this approach presents a model aligned with circular economy principles and constitutes a significant step toward a green transformation in the construction sector. In conclusion, this thesis demonstrates that using industrial metal oxide waste materials as partial cement replacements can enhance the mechanical and physical properties of concrete while offering environmental benefits. In particular, mixtures with 10% colemanite and aluminum oxide were found suitable for use in load-bearing structural elements. Other substitution levels, due to their technical limitations, are recommended for non-structural applications such as infill and plaster. Given its physical performance, colemanite-containing concrete may also be suitable for exterior cladding, flooring, and water-exposed environments. For future studies, these additives should be tested with different binder systems, under various climatic conditions, and in combination with different aggregate types. Durability-related parameters such as long-term strength, freeze-thaw resistance, and sulfate resistance should also be considered. Comprehensive assessments of environmental impacts through carbon footprint and life cycle analyses will support progress toward sustainable building material development. In this regard, the study contributes to the scientific literature and offers innovative practical solutions.
Benzer Tezler
- Betonun mekanik özellikleri üzerine cam tozu ve alkalilerle aktive edilmiş yüksek fırın cürufu etkisi
The effect of glass powder and alkali activated blast furnace slag on mechanical properties of concrete
MAHIR ALIYEV
Yüksek Lisans
Türkçe
2019
İnşaat MühendisliğiAtatürk Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MERAL OLTULU
- Effect of Rice Husk Powder content with different watercement ratios on rheological properties of cement-based grouts
Çimento esaslı enjeksiyon harcına farklı su-çimento oranları ile farklı oranlardaki pirinç kabuğu tozu katılarak reolojik özelliklerinin üzerindeki etkisini inceleme
MUHAMMET ÇINAR
Yüksek Lisans
İngilizce
2015
İnşaat MühendisliğiHasan Kalyoncu Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. HANİFİ ÇANAKCI
- Dökümhane kumlarının yönetimi ve kullanılabilirliğinin araştırılması
An investigation of the usability and management of foundry sands
ELİF HATİCE GÜRKAN
Doktora
Türkçe
2014
Çevre MühendisliğiOndokuz Mayıs ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DOÇ. DR. SEMRA ÇORUH
- Kalsine kırmızı çamurun puzolanik aktivite ve betonun renklendirme, mineraloji ve fiziksel özelliklerine etkisinin incelenmesi
The investigation of calcined red mud effects on pozzolanic activity and colouring, mineralogical and physical properties of concrete
YASEMİN KILIÇ
Doktora
Türkçe
2013
Metalurji MühendisliğiYıldız Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
PROF. DR. MÜZEYYEN MARŞOĞLU
- Yıkama suyu filtre kalıntı malzemesinin harç özelliklerine etkisi
Effects of washwater filter residue material on properties of mortars
ADİL GÖRKEM GEDİK
Yüksek Lisans
Türkçe
2022
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ÜNAL ANIL DOĞAN