Geri Dön

Yüzey kırığı haritalamada termal kızılötesi verilerin kullanımı, 6 şubat 2023 Kahramanmaraş, Pazarcık depremi örneği

Utilizing thermal infrared data in surface rupture mapping, the case of feb 6, 2023 Pazarcık earthquake, Kahramanmaraş

  1. Tez No: 958333
  2. Yazar: MELİKE KARAKAŞ GEDİK
  3. Danışmanlar: DOÇ. DR. ORKAN ÖZCAN, PROF. DR. CENGİZ YILDIRIM
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilim ve Teknoloji, Jeoloji Mühendisliği, Science and Technology, Geological Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2025
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Katı Yer Bilimleri Ana Bilim Dalı
  12. Bilim Dalı: Jeodinamik Bilim Dalı
  13. Sayfa Sayısı: 76

Özet

Depremler sonrasında kilometrelerce uzunlukta oluşan yüzey kırıklarının izlenmesi ve haritalanması deprem haraketlerinin anlaşılması için oldukça önemlidir. Yüzey kırıklarının genelde uzun alanlara yayılması ve bazı durumlarda yüzeye çıkan kırıkların yanısıra yüzeyin altında da kırığın devam ettiği bilinmektedir. Bu gibi durumlarda yüzey kırıklarının kesintisiz haritalanmasında fiziksel saha çalışmaları çok uzun zamanlar almaktadır. Uzaktan Algılama kaynakları olan uydu görüntülerinin kullanılması ise hem çözünürlük yetersizliği hem de atmosferik gürültüler nedeniyle zor olabilmektedir. Bu çalışmada, sırasıyla 7.7 ve 7.6 büyüklüğünde meydana gelen Kahramanmaraş depremleri sonrası birinci deprem kaynaklı oluşan yüzey kırığının kesintisiz haritalanması için termal ve optik kamera monte edilmiş İHA kullanılarak 280 kilometre uzunluğundaki yüzey kırığı boyunca 2023 yılı Mart ve Haziran aylarında uçuşlar gerçekleştirilerek, termal ve optik görüntüler alınmıştır. Uydu ve hava fotoğrafı görüntülerinde yüzey kırıklarının ormanlık alanlarda ve yoğun bitki örtüsü altında takibinin yapılamaması ve dahi optik kamerada görünmeyen bazı fay izleri termal görüntüleme ile belirgin şekilde haritalanabilmesi bu çalışmanın önemini ortaya koymaktadır. Haritalama süreci, yüzey kırığının çevresine kıyasla oluşan sıcaklık farklarına dayalı olarak gelişen pozitif ve negatif termal anomalilerin termal veri üzerinden izlenmesi ve optik görüntüler ile doğrulanarak haritalanması şeklinde gerçekleştirilmiştir. Ayrıca çalışmada, yüzey kırığı boyunca gözlenen anomalilerin büyüklüğü ve dağılımını etkileyen faktörleri incelemek amacıyla normalize edilmiş bitki ve nem indeksi farkı, hava sıcaklığı, litoloji, bakı, eğim, güneşin yüksekliği ve geliş yönü parametreleri de değerlendirilerek bütüncül bir yaklaşım sunulmak istenmiştir. Çalışmada anomali farklılıklarının sadece tek bir parametreye göre şekillenmediği aksine nem, bitki indeksi, hava sıcaklığı gibi atmosferik etkilerin yanı sıra güneşe maruziyet ve kırığın türüne bağlı olarak bir arada çoklu parametrelerin etkisiyle oluştuğu ortaya konulmuştur. Bu çalışmayla birlikte ilk kez, bir deprem yüzey kırığı termal görüntüler kullanılarak yaklaşık 280 km boyunca haritalanmıştır. Termal görüntüleme yönteminin haritalama sürecine entegre edilmesi, amacına hizmet ederek başarılı bir veri seti ortaya koymuştur. Bu yöntemin, geleneksel teknikleri tamamlayıcı nitelikte bir araç olarak tercih edilebileceği öngörülmekte olup, deprem davranışlarının ve fay hareketlerinin izlenmesine yönelik gelecekteki çalışmalara da önemli katkılar sağlayacağı değerlendirilmektedir.

Özet (Çeviri)

Earthquakes are among the most complex natural disasters, often causing significant destruction. Understanding their behaviour and reducing future hazards necessitates the analysis of past events and continuous monitoring of fault movements. Surface ruptures that emerge following earthquakes serve as critical indicators in analysing seismic behaviour and interpreting fault dynamics. This study aimed to produce a continuous map of the surface rupture caused by the first of the two devastating earthquakes (Mw 7.7 and Mw 7.6) that struck on 6 February 2023 along the East Anatolian Fault (EAF), in order to better understand the rupture extent and associated fault dynamics. To achieve this, thermal and optical cameras mounted on an RTK-equipped drone were used to conduct flights along a 280 km segment of the fault zone. These flights were carried out in March and June 2023, during which imagery was systematically collected along the rupture trace. The use of two separate time periods enabled a seasonal comparison, allowing the investigation of how atmospheric and solar radiation differences influence thermal responses along the rupture. The thermal nature of the data made it highly sensitive to such temporal variations. Furthermore, the flights were conducted at varying times of day under different atmospheric conditions, which also had measurable effects on the thermal signatures recorded. These variations were carefully documented and considered during interpretation. The images were processed using Agisoft Metashape Professional. The drone images, acquired with an 80% overlap, underwent image alignment and camera calibration to generate dense point clouds. From these clouds, high-resolution (10 cm) digital elevation models (DEMs) and orthophotos were produced and mosaicked to produce a continuous visualisation of the surface rupture along the entire 280 km corridor. One of the primary challenges in the continuous mapping of the surface rupture using optical images was the inability to visually trace the rupture in areas such as dense vegetation or forested terrain. To overcome this limitation and introduce a novel approach not commonly explored in the literature, continuous mapping of the surface rupture was implemented using thermal imagery. This method aimed to identify subtle thermal anomalies potentially indicative of fresh fault scarps or ruptured surfaces that may not be visible in optical datasets. Seismic waves generated by the earthquake induce stress within the continental crust, leading to ruptures when forces exceed the strength of the surface. During such events, subsurface soils previously isolated from sunlight and atmospheric exposure emerge to the surface. This study was motivated by the hypothesis that freshly exposed soils may possess higher moisture content, increased porosity, and therefore exhibit distinct thermal properties compared to long-exposed surface materials. These differences, even if visually imperceptible, could manifest as thermal anomalies detectable in infrared imagery. The analysis of thermal orthophotos revealed distinct relative temperature differences along the surface rupture compared to the surrounding terrain. Throughout the study, these differences were interpreted as rupture-related thermal anomalies. Optical and thermal orthophotos acquired during field campaigns were co-registered, and the surface rupture was manually digitized in a GIS environment using both datasets for maximum accuracy. Along the digitized rupture zone, location points were placed at 7-metre intervals to facilitate high-resolution analysis. To determine ambient temperature values, auxiliary points were positioned perpendicular to the rupture trace, at a distance of 3 metres on both sides. A 1.5-metre buffer zone was defined around each of these points to calculate average temperatures representative of undisturbed terrain. Surface temperatures were extracted on a pixel basis from the high-resolution thermal orthophotos, and anomaly values were calculated relative to their immediate surroundings. This approach allowed for a more precise thermal characterization of the rupture zone. In locations selected for detailed analysis, swath profiles measuring 12 metres in length and 4 to 10 metres in width were created, centered on the rupture trace. These profiles facilitated comparison between temperature values directly on the rupture and those of adjacent undisturbed areas to the north and south. As a result, the spatial extent and magnitude of local thermal anomalies were precisely delineated and interpreted in the context of multiple overlapping environmental and structural parameters. To enhance the interpretation of thermal anomalies, additional environmental datasets were integrated into the analysis. A lithological map of the study area was consulted, and Landsat 8 imagery with minimal cloud coverage was used to derive both NDMI (Normalized Difference Moisture Index) and NDVI (Normalized Difference Vegetation Index) layers, providing insight into vegetation cover and surface moisture. Furthermore, slope and aspect maps were generated from the DEMs to capture topographic influences. In order to better evaluate solar-related thermal variability, the solar azimuth and altitude for each data acquisition timestamp were calculated. These parameters were then used to estimate site-specific solar exposure values, which were compared against the extracted thermal data. This approach enabled a more holistic interpretation of the thermal anomalies by relating them to surface orientation, vegetation density, lithological context, and sun parameters at the moment of image capture. The results of this study confirm the practical success of using thermal imaging in surface rupture mapping. This method has proven particularly effective in detecting rupture traces beneath dense forest cover areas where optical and satellite imagery often fail. Moreover, thermal anomalies provided clear ruptural continuity in agricultural fields with high vegetation density, forested slopes, and even in open terrains where fault lines were not visually distinguishable in optical imagery. These findings demonstrate that thermal data can function as a powerful supporting method to traditional optical imaging, allowing the surface rupture to be continuously traced with greater confidence. Thermal anomalies were found to be strongly influenced by environmental conditions, showing a clear positive correlation with ambient temperature and solar exposure. In regions characterized by forest cover, shade, low air temperature, and high moisture content, anomaly values tended to be lower. Conversely, higher thermal anomalies were recorded in hot, barren, or bedrock-dominated areas. Despite this variability, thermal signatures associated with the rupture were distinctly observable in both field campaigns, regardless of season. These observations reinforce the robustness of thermal imaging in capturing rupture characteristics even under different environmental conditions. Ultimately, the thermal map generated from this study demonstrates that temperature signatures are influenced not only by localized thermal contrasts but also by broader surface processes and the regional energy balance. The findings support the conclusion that thermal infrared imagery offers a valuable, complementary tool to conventional optical methods for detecting and mapping surface ruptures caused by large-magnitude earthquakes.

Benzer Tezler

  1. Genesis of polymetallic (Pb-Zn-Cu±Ag±Au) mineralization at Yayladali and its environs (Manisa), Turkey

    Manisa Yayladalı (Pb-Zn-Cu±Ag±Au) polimetalik cevherleşmesinin jenezi

    KABIRU MOHAMMED

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Jeoloji Mühendisliğiİstanbul Teknik Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUSTAFA KUMRAL

  2. High resolution coseismic surface displacement measurements between Çiğli and Hassa along the surface rupture of february 6, 2023 Pazarcık Earthquake

    6 Şubat 2023 Pazarcık Depremi (Mw 7.7) Çiğli ve Hassa arasında yüzey kırığı boyunca yüksek çözünürlüklü eşsismik yüzey deformasyonu ölçümleri

    ÇAĞDAŞ MERT BAKA

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Jeoloji Mühendisliğiİstanbul Teknik Üniversitesi

    Katı Yer Bilimleri Ana Bilim Dalı

    PROF. DR. CENGİZ YILDIRIM

  3. Analysis of the crustal deformation caused by the 1999 Izmıt Düzce earthquakes using synthetic alperture radar interferomentry

    1999 İzmit ve Düzce depremlerinin neden olduğu kabuk deformasyonunun sentetikaçıklık radar interferometrisi ile incelenmesi

    ZİYADİN ÇAKIR

    Doktora

    İngilizce

    İngilizce

    2003

    Jeoloji Mühendisliğiİstanbul Teknik Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERDAR AKYÜZ

  4. Deformation of the central part of the East Anatolian fault examined in the light of space-based geodesy

    Doğu Anadolu fay zonundaki tektonik hareketlerin anlaşılmasında uzay-temelli jeodezik gözlemlerin rolü

    SELVER ŞENTÜRK

    Doktora

    İngilizce

    İngilizce

    2023

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Katı Yer Bilimleri Ana Bilim Dalı

    PROF. DR. ZİYADİN ÇAKIR

  5. Doğrultu atımlı faylarla ilişkili yüzey kırıklarının odak derinliği ve örtü kalınlığı ilişkisinin mekanik modellerle incelenmesi

    Investigation of the relationship between depth of focus and overburden and the surface ruptures related with strike slip faults by mechanical models

    AYŞEGÜL TURGUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2007

    Jeoloji MühendisliğiHacettepe Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    PROF.DR. K. ERÇİN KASAPOĞLU