Manuel şanzıman vites çatalının yapısal analizi ve biyomimetik yaklaşım ile topoloji optimizasyonu
Structural analysis and topology optimization of manual transmission shift fork using a biomimetic approach
- Tez No: 964691
- Danışmanlar: DOÇ. DR. NESLİHAN ÖZSOY
- Tez Türü: Yüksek Lisans
- Konular: Makine Mühendisliği, Mechanical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Makine Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Makine Tasarım ve İmalat Bilim Dalı
- Sayfa Sayısı: 91
Özet
Bu çalışmada, manuel şanzıman sistemlerinde yer alan ve güç aktarımında önemli rol oynayan vites çatalının (Shift Fork) yapısal analizi ANSYS Workbench Programında gerçekleştirilmiş, ardından biyomimetik(Doğadan Esinlenme) tasarım ilkeleri doğrultusunda topoloji optimizasyonu uygulanmıştır. Araç dinamiği açısından kritik öneme sahip bu parça, hem dayanıklılık hem de hafiflik gereksinimlerini karşılayacak şekilde yeniden tasarlanmıştır. İlk aşamada, mevcut vites çatalı modeli SolidWorks ortamında üç boyutlu olarak oluşturulmuş ve Sonlu Elemanlar Analizi (SEA) yöntemi ile çeşitli yükleme senaryoları altında yapısal davranışı incelenmiştir. Gerilme ve deformasyon sonuçları değerlendirilerek zayıf bölgeler tespit edilmiş ve yeniden tasarım süreci başlatılmıştır. Tasarım aşamasında, doğadaki dayanıklı yapılardan esinlenilerek biyomimetik bir yaklaşım benimsenmiştir. Bu kapsamda, çok eksenli yükler altında yüksek yapısal stabilite sergileyen Euplectella aspergillum (yaygın adıyla Venüs Çiçek Sepeti) canlısının silis kafes yapısı referans alınmıştır. Bu doğal yapının mühendislikteki uygulanabilirliği, geometrik adaptasyonu ve malzeme verimliliği açısından dikkate değerdir. Tasarımda bu yapıya benzer kafes geometrileri entegre edilmiştir. Topoloji optimizasyonu ile malzeme dağılımı yeniden şekillendirilmiş, hem ağırlık azaltılmış hem de yapısal bütünlük korunmuştur. Analizler sonucunda, 350 N yük altında orijinal modelde von Mises gerilmesi 41,176 MPa iken, optimize modelde bu değer 486,72 MPa'ya ulaşmıştır. Bu, optimize modelin SAE 4140 çeliğinin yaklaşık 655 MPa'lık akma sınırına yaklaştığını ve malzeme kapasitesinin etkin kullanıldığını göstermektedir. Aynı yük altında deformasyon, orijinal modelde 0,064821 mm, optimize modelde 0,37525 mm olarak ölçülmüş; artışa rağmen elastik sınırlar içinde kalınmıştır. Ayrıca, hacim karşılaştırmasında orijinal modelin hacmi 142.320 mm³, optimize modelin ise 88.465 mm³'tür. Yaklaşık %60,89'lik hacim azalımı ve buna bağlı anlamlı kütle düşüşü sağlanmıştır. Bu durum, hem üretim maliyetlerinin azaltılmasına hem de otomotiv parça ağırlığının düşürülerek yakıt verimliliği gibi performans kriterlerine katkı sağlamaktadır. Sonuç olarak, biyomimetik temelli topoloji optimizasyonu, manuel şanzıman vites çatalı gibi mekanik açıdan kritik parçaların daha verimli ve işlevsel şekilde yeniden tasarlanmasına olanak tanımaktadır. Bu çalışma, doğadan ilham alan mühendislik uygulamalarının, performans artışı ve sürdürülebilirlik hedeflerine önemli katkılar sunabileceğini ortaya koymaktadır.
Özet (Çeviri)
In modern automotive systems, the pursuit of weight reduction, material efficiency, and structural durability has become a core objective in mechanical component design. One such component, the shift fork in manual transmission systems, plays a crucial role in gear engagement and torque transfer. Subjected to repeated dynamic and static loads, the shift fork must endure operational stresses while maintaining positional accuracy and resisting deformation. This thesis investigates the structural behavior of a conventional shift fork and proposes a redesign through biomimetic topology optimization to enhance both mechanical performance and lightweight characteristics. The study followed a two-phase methodology. First, a structural evaluation of the existing component was carried out using Finite Element Analysis (FEA), where mechanical weaknesses were identified. The second phase involved an optimization process inspired by natural load-bearing systems, aiming to minimize weight while maintaining structural integrity. This combination of engineering simulation and bio- inspired design offers a novel approach to re-engineering mechanical parts for enhanced efficiency. A 3D model of the original shift fork was generated using SolidWorks, reflecting realistic geometric and boundary conditions based on actual vehicle assembly constraints. The model was then imported into ANSYS Workbench, where static structural analyses were conducted under various load cases to simulate real-world usage. Boundary conditions mimicked typical operational constraints found in gear- shifting systems. The maximum von Mises stress and total deformation values were computed, forming the basis for identifying structurally inefficient regions within the part. Following the identification of weak zones, a redesign strategy was adopted based on biomimetic principles. In this context, nature was considered not only as a source of inspiration but as a database of proven structural solutions evolved over millions of years. The deep-sea sponge Euplectella aspergillum—commonly known as Venus' Flower Basket—was selected as a biological analog due to its intricate, lattice-like siliceous skeleton. This organism's structure demonstrates superior load distribution capabilities and resilience to multiaxial forces despite its delicate appearance. Geometrically, the sponge's skeletal structure is composed of interconnected silica spicules arranged in a square-diamond lattice configuration with helical reinforcement, enabling exceptional mechanical performance with minimal material. Such characteristics align with engineering goals of high stiffness-to-weight ratio. By abstracting and translating these principles into CAD and simulation environments, an optimized internal architecture for the shift fork was proposed. To further enhance the design, topology optimization was performed. This method involves iteratively removing low-stress regions from the material volume, leaving only the load-carrying paths essential for mechanical performance. The optimization problem was formulated to minimize mass under specific stress and displacement constraints, ensuring safety and manufacturability. The solver used in ANSYS Mechanical's topology module processed boundary conditions and material properties for SAE 4140 alloy steel—a high-strength, heat-treatable steel commonly used in automotive applications. Results revealed that the optimized geometry exhibited a significant improvement in material usage efficiency. Under a static load of 350 N, the von Mises stress increased from 41.176 MPa in the original model to 486.72 MPa in the optimized version. While this increase may appear substantial, it remains well below the yield strength of SAE 4140 (approximately 655 MPa), demonstrating that the new design operates close to, but within, the material's elastic limit—thereby maximizing performance. In terms of displacement, a trade-off was observed. Total deformation in the original model was recorded as 0.064821 mm, whereas in the optimized structure it increased to 0.37525 mm. Despite the rise in displacement, the value remained within acceptable elastic boundaries, maintaining the component's functional integrity during operation. Moreover, a comparative volumetric analysis revealed a drastic reduction in component volume—from 142,320 mm³ in the baseline model to 88,465 mm³ in the optimized design. This represents a 60.89% decrease, directly translating into lower mass and improved vehicle fuel efficiency due to the reduction in unsprung weight. In addition to energy savings, the lighter component contributes to reduced emission levels and lower raw material consumption, aligning with sustainable manufacturing objectives. To evaluate the mechanical influence of lattice parameters in greater detail, a parametric study was conducted, focusing on the impact of square (Ts) and diagonal (Td) bar thicknesses in the biomimetic lattice structure. Table 5.7 presents a comparative analysis of different rod dimensions within periodic unit cells (45 × 45 mm, θ = 45°, D = 2.5 mm spacing). The analysis demonstrated a strong correlation between bar thickness and mechanical performance metrics. For instance, in the configuration with Ts = 0.40 mm and Td = 0.30 mm, the total deformation was 0.015576 mm. However, when thinner rods (Ts = 0.30 mm, Td = 0.20 mm) were used, the deformation rose to 0.020183 mm. A similar trend was observed in stress values. Maximum shear stress dropped from 80.833 MPa (thin-rod model) to 50.048 MPa (thicker-rod model), while von Mises stress decreased from 160.47 MPa to 93.109 MPa with increasing bar diameter. These findings highlight the role of lattice geometry in modulating stiffness and suggest that strategic selection of rod dimensions can tailor performance without unnecessary material use. Another significant aspect of the study is the compatibility of the new design with advanced manufacturing technologies. The intricate internal geometries derived from biomimetic patterns are particularly suited for additive manufacturing processes such as Selective Laser Melting (SLM). SLM enables the fabrication of complex structures with minimal post-processing, making it a viable production method for lightweight, high-performance components with embedded lattice networks. The redesigned shift fork not only meets functional and mechanical expectations but also satisfies broader design criteria such as manufacturability, sustainability, and lifecycle efficiency. The study demonstrates that integrating nature-inspired design with engineering analysis can lead to solutions that are both technically robust and environmentally responsible. From a broader perspective, the methodology used in this thesis—combining FEA, biomimetic modeling, and topology optimization—offers a replicable framework for the development of other load-bearing mechanical components. Parts such as suspension brackets, control arms, differential housings, or steering linkages can all benefit from similar techniques, especially in fields where weight, strength, and efficiency are tightly interlinked. In conclusion, this study illustrates how a conventional automotive component like a shift fork can be innovatively redesigned by embracing biological design strategies and computational optimization tools. The results offer a compelling example of how interdisciplinary thinking—merging biology, engineering, and material science—can yield components that are lighter, stronger, and better suited to modern performance demands.
Benzer Tezler
- Ağır vasıtalarda otomatikleştirilmiş manuel şanzımana ait parametrelerin optimizasyonu ve yakıt tüketimine etkileri
Optimization of automated manual transmission parameters and their effects on fuel consumption in heavy-duty vehicles
DURAN ARİF GÖÇER
Yüksek Lisans
Türkçe
2022
Mekatronik MühendisliğiNecmettin Erbakan ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. İBRAHİM YILDIZ
- A gear health monitoring system for transmission prognosis
Şanzıman prognozu için bir dişli durumu izleme sistemi
MURATHAN GÜZEL
Yüksek Lisans
İngilizce
2019
Mekatronik Mühendisliğiİstanbul Teknik ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. ATA MUGAN
- Fuzzy logic based clutch torque curve detection algorithm for heavy duty vehicles
Ağır hizmet araçları için bulanık mantık tabanlı debriyaj tork eğrisi belirleme algoritması
OGÜN CANTÜRK
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
DOÇ. DR. İLKER ÜSTOĞLU
- Ticari taşıtlar için alternatif hibrit güç aktarma sistemlerinin analizi
An analysis of alternative hybrid powertrain systems for commercial vehicles
EMİRCAN BEŞLER
Yüksek Lisans
Türkçe
2025
Otomotiv MühendisliğiYıldız Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. ORKUN ÖZENER
- Analytical and experimental investigation of frictional behaviors of command and control cables
Kontrol kablolarının friksiyon davranışlarının analitik ve deneysel olarak incelenmesi
CÜNEYT BAYRAM
Yüksek Lisans
İngilizce
2021
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ZEYNEP PARLAR