CHURN ANALYSIS FOR PAY TV WITH MACHINE LEARNING
MAKİNE ÖĞRENMESİ İLE CHURN TALEBİ ANALİZİ
- Tez No: 967157
- Danışmanlar: YRD. DOÇ. DR. TUNA ÇAKAR
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: İngilizce
- Üniversite: MEF ÜNİVERSİTESİ
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgi Teknolojileri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 66
Özet
Son günlerde Pay TV hizmetleri çeşitlenmektedir. Çeşitlenen hizmetlerle birlikte şirketler arasındaki rekabette artmaktadır. Strait Reserch araştırmalarına göre 2021 yılında 183 milyon dolar olan Global Pay TV pazarının 2030 yılında 210 milyon dolara yükselmesi tahmin edilmiştir. Bunun yanısıra Neflix'in araştırmasına göre edinilmiş veya elde tutulan abonelerin daha değerli olduğu belirtilmektedir. Aboneliklerini sonlandırmayı düşünen müşterilerin önceden tahmin edilebilmesi şirketler açısından oldukça önemli bir hal almıştır. Son yıllarda etkinliği gittikçe artan makine öğrenmesi ve yapay sinir ağları gibi tekniklerle tahminlemeyi yapmak daha kolay hale gelmiş ve şirketlere önemli katkılar sağlamaktadır. Bu çalışmada, bazı makine öğrenmesi modelleri ile ilgili bilgiler verilmiştir. Pay TV hizmeti veren bir şirketin verileri kullanılarak bazı makine öğrenmesi modelleri ile tahminlemeler yapılmıştır. Son olarak abonelik iptal talep edebilecek müşterilerin, son yaptığı abonelik iptal talebi ve en çok yaptığı iptal talepleri ile ilgili bilgilerde sonuca eklenerek, abonelik iptal talebi gerçekleşmeden, müşteriyle iletişime geçilmesi ve uygun bir kampanya önerilerek iptali önlemek hedeflenmiştir. Bu çalışma da etiketli veriler kullanılarak denetimli öğrenme teknikleri ile çalışılmıştır. Çalışma kapsamında Random Forest, XGBoost Classifier, KNeigbors Classifier, Logistic Regression, Ada Boost Classifier, Linear Discriminant Analysis, Decision Tree Classifier ve Extra Tree Classifier modelleri kullanılmıştır. Bütün modeller için başarı ölçütleri bulunmuş ve karşılaştırılmıştır. Servis sağlayıcıdan elde edilen veriler açısından en uygun model Random Forest olarak belirlenmiştir.
Özet (Çeviri)
Recently, Pay TV services are diversifying. With diversified services, competition between companies increases. According to a study, the size of Pay TV is $183 million in 2021. According to the same study, this is estimated to reach $210 million in 2030. [1] In addition, according to Netflix's research, it is stated that acquired or retained subscribers are more valuable. [2] Predicting customers who are considering terminating their subscriptions has become very important for companies. In recent years, ML and artificial neural network techniques have made significant progress in prediction. They provide significant contributions to companies' decision-making processes. In this study, live data from a company that provides services in Turkey was used, and predictions were made with 8 different machine learning. Finally, by adding information about the last subscription cancellation request and the most frequently made cancellation requests of customers who may request subscription cancellation, the aim is to contact the customer before the subscription cancellation request is realized and to prevent cancellation by offering a suitable campaign. In this study, supervised learning techniques were used using unlabeled data. Within the scope of the study, Random Forest, XGBoost Classifier, KNeighbors Classifier, Logistic Regression, Ada Boost Classifier, Decision Tree Classifier, Extra Tree Classifier and Linear Discriminant Analysis models were used. Success criteria were found and compared for all models. When the data used in the study and the results of 8 different models were compared, the Extra Tree model was selected from among the few models that gave the best results. The purpose of choosing this model is to obtain better results than other models for records with fewer samples.
Benzer Tezler
- Using predictive analytics methods for credit risk analysis
Başlık çevirisi yok
DENİZ YAVUZ
Yüksek Lisans
İngilizce
2020
BankacılıkYeditepe ÜniversitesiYönetim Bilişim Sistemleri Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÖKHAN ŞAHİN
- Gsm sektörü için müşteri merkezli bilgi yönetimi değerlendirme modeli tasarımı ve bir uygulama
The design of customer centric knowledge mangement assessment model for gsm ındustry and an aplıcatıon
ATİK KULAKLI
- Telekomünikasyon sektörü için veri madenciliği ve makine öğrenmesi teknikleri ile ayrılan müşteri analizi
Churn analysis for telecommunication sector with data mining and machine learning
FURKAN UYANIK
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Ticaret ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUSTAFA CEM KASAPBAŞI
- Noncontractual churn analysis for a private bank customers
Sözleşmesiz özel banka müşterilerine yönelik müşteri kaybı analizi
BAHA ULUĞ
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir ÜniversitesiYapay Zeka Ana Bilim Dalı
PROF. DR. SÜREYYA AKYÜZ
- Novel clustering algorithms: entropy based neighborhood merging (ENM) and simultaneous feature selective clustering (SFSC)
Özgün kümeleme algoritmaları: Entropi tabanlı komşuluk birleştirme ve eş zamanlı öznitelik seçici kümeleme
MUSTAFA ÜNVER
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. NİHAL ERGİNEL