Geri Dön

Bayındırlık ve İskan Bakanlığı'nın tip duvarlarında simetrik köşelerin ısı köprüsü etkisinin incelenmesi

Investigation of the effect of thermal bridge at symetrical corners on typical wall constructions approved by the Ministry of Public Works

  1. Tez No: 19388
  2. Yazar: GÜLBİN ERSOY
  3. Danışmanlar: DOÇ. DR. LEMİ YÜCESOY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mimarlık, Architecture
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1991
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yapı Bilgisi Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 138

Özet

Bu çalışmada, Bayındırlık ve İskân Bakanlı ğı' nın 16 Ocak 1985 tarih ve 18637 sayılı yönetmeliğinden seçilen kabuk tiplerinde, duvar ve simetrik köşe iç yüzey sıcaklıkları ile köşenin duvar üzerindeki ısı köprüsü etkisi incelenmiştir. Bunun için, seçilen kabuk örnekleri, TS/825'deki sınır değerlerine göre irdelenmiştir- Daha sonra kaynak £l2 J* de tarif edilen grafik yöntemle köşe iç yüzey sıcak lıkları bulunmuş ve kaynak [ 14 ]] ' e göre köşenin ısı köprüsü etkisinin devam ettiği sınırlar tespit edilmiştir. Son olarak da karşılaştırma yapmak amacıyla aynı boyutlar da köşeli ve köşesiz iki duvar tipindeki ısı kayıpları incelenmiştir. Elde edilen sonuçlara göre, iki duvarın kesiştiği köşe doğrusu üstünde iç yüzey sıcaklıkları, duvara göre düşüş göstermekte, köşesiz duvara göre köşeli duvarda ısı kayıpları daha büyük olmakta ve duvarın kalınlık ve ısı iletkenlik değerlerinin çarpımı büyüdükçe köşenin çerçeve sınırları da büyümektedir.

Özet (Çeviri)

In this study, internal surface temperatures of the wall and the corner and the effect of corner's thermal bridge on the wall have been investigated according to the thermal values given in The Building Regulations on Heat Insulation (TS 825). For this reason, ten wall types for the 1st Climate Zone, twelve for the 2nd and fourteen four the 3rd have been chosen. The study has been realised at four stage: 1. Stage: Definition of the external climatic conditions 2. Stage: Calculation of the thermal values which belong to the wall 3. Stage: Calculation of the thermal values which belong to the corner 4. Stage: Comperison in respect of heat transfer quantities at cornered and uncornered walls. At first stage, a pilot city for every climate zone has been chosen. These pilot cities are located in the geographical center of these zones. Also external climatic conditions have been taken from the winter datas (Table 2.2). The internal relative humidity, the internal air temperature, the dewpoint temperature and heat convection coefficient of internal surface have been chosen for VIdefinition of the internal climatic condition. These values have been chosen as 55%, 18 °C and 8,14 W/m2°C respectively. At second stage, thermal values which belong to the wall have been calculated. These values are as fallows: Resistance of heat transfer: 1/ d, d0 dQ d XA = l, 2, 3.,... L m'°C/W Xl X2 A3 An Coefficient of heat transfer: k = 1 W/m2°C“ 1 + -L. + ! ^i A «j Heat transfer rate of flow: q= k. A W/ra2 Internal surface temperature of the wall: Dewpoint temperature of the wall: It is read from the Table 3.1. The internal plaster has been taken as 0,02 m and also the external plaster has been taken as 0,03 m cement mortar at all typical wall constructions and their resistances have been included the total resistances of heat transfer of these constructions. Because of this, the total resistances of heat transfer are enough with external and internal plasters at the typical wall constructions called 1A, 1G and 2A. All calculations which VIIbelong to the wall can be read from Tables 1.1, 1.2 and 1.3. At third stage, internal surface temperatures which belong to the corner have been found using the Gruber ' s graphic method. Then, the distances of effect limit have been calculated. The graph described in [j2H applies in the case of there different heat convection coefficients of internal surface and a constant temperature (Diagram 4.2.). In addition, the graph is in old technical system in Q12”3. However a new graph is located in O^H according to the the international system. In this study, a new graph has been produced according to different temperature differences for three climate zones and for only one heat convection coefficients of internal surface ( Ocj = 8, 14 W/m2°C). Internal surface temperatures (corner's and wall's) can be read from the new graph (Diagram 4.3). After reading the internal surface temperatures from the graph, the distance of effect limits have been calculated according to Q 14 ^] and £ 15 ^]. m m The little one of these values is taken as distance of effect limit ( 2 ). For this calculation, half of the stratum is taken at only one stratified walls. In this study, distance of effect limit which are calculated according to the internal stratum have being longer than the external one. VIIIAt fourth stage, two wall types have been compared: Their height and lenght are constant but one of them is cornered, the other one is uncornered (the datas which belong to these wall types can be taken from the Tables 5.1, 5.2 and 5.3). For this reason, heat transfer quantities have been calculated at uncornered wall: () = k. F. A._ W n n n t After this, heat transfer quantities have been calculated at cornered wall. But here, it's necessary to calculate the average heat transfer rate of flow of the zone between the effect limits. For this calculation, arithmetrical averages of corner's and wall's heat transfer rate of flow have been taken instead of complex computer procedures. *e = _ qk + ^n W/m: Heat transfer coefficient of the effect limit is calculated depending on the heat transfer rate of flow. t, - qe W/m2°C ke : Heat transfer quantities flowing from the effect limits are as follows: Qe = 2. ke. At. F w After this, heat transfer quantity of the piece of wall between two effect limits has been calculated. IXQd = kn. \ ? Fd »? (Fd = Fn " 2Fe> Total heat transfer quantity of cornered wall is total of the frame's and this piece of wall's heat transfer quantities. Qk = Qe + Qd w According to the results, total heat losses at cornered have decreased in proportion to uncornered wall (Diagram 6.1, 6.2 and 6.3). Also corner's temperatures have decreased in proportion to internal surface temperatures of wall. Moreover lenghts of effect limits aren't connected whith the stratum numbers of wall constructions. It's connected with the product wall's thickness and heat convection values.

Benzer Tezler

  1. Yarı rijit mesnetlenmiş perdeler ile güçlendirilen bir okul binasının kırılganlık eğrileri

    The fragility curves of a school building retrofitted by semi-rigid supported shear walls

    ÇAĞDAŞ TUNÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERCAN YÜKSEL

  2. Bir tipik okul projesinde mevcut ve güçlendirilmiş durumlar için kırılganlık eğrilerinin oluşturulması

    Determination of the fragility curves of a typical school building for the existing and retrofitted cases

    SAYGI KOÇAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERCAN YÜKSEL

  3. Bayındırlık ve İskan Bakanlığının eski ısı yalıtım yönetmeliği'nde önerdiği tip döşeme kesitlerinin değerlendirilmesi, yeni yönetmelik ve TS 825'e göre yeniden önerilmeleri

    Evaluation of typical floor sections suggested administration and suggestions to new regulation and TS 825

    NESLİHAN AYŞE ÇÖLHAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2001

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. NİHAL ARIOĞLU

  4. Türkiye'de tip proje olgusu

    Typical project fact in Turkey

    MEVLÜT ERÇİN TEKİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    MimarlıkYıldız Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ.DR. ÖMÜR BARKUL

  5. A provision model and design guidelines for permanent post-disaster housing in rural areas of Turkey based on an analysis of reconstruction projects in Çankırı

    Türkiye'nin kırsal alanlarda uygulanacak kalıcı afet konutları için Çankırı'da uygulanan yeniden yapım projelerinin analizine dayanan bir konut sağlama modeli ve tasarım kılavuzu

    NEŞE DİKMEN

    Doktora

    İngilizce

    İngilizce

    2005

    MimarlıkOrta Doğu Teknik Üniversitesi

    Mimarlık Bölümü

    Y.DOÇ.DR. SOOFİA TAHİRA ELİAS ÖZKAN