Geri Dön

Seyitömer Termik Santralı atık uçucu küllerinin yapı malzemesi olarak değerlendirilmesi

Benefication of Seyitömer power plant waste fly ash as a building material

  1. Tez No: 21726
  2. Yazar: ŞENOL YILMAZ
  3. Danışmanlar: DOÇ. DR. OSMAN T. ÖZKAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Metalurji Mühendisliği, Metallurgical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1992
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 90

Özet

ÖZET Seyitömer- Termik Santralı atık uçucu küllerinin yapı malzemesi olarak değerlendirilmesi amacıyla ele alınan bu araştırmanın ilk aşamasında, kullanılan hammaddelerin karakterizasyonu yapılmıştır. Diferansiyel termal analiz -termogravimetri ve x-ışınları difraksiyonu yön temleri ile yapılan mineralojik analizlerde, uçucu küllerin çoğunlukla amorf faz içerdiği, kristal fazında enstatit, or-kuvars ve kalsiyum stilfat 'dan oluştuğu saptanmış tır. Bağlayıcı olarak kullanılan kilin ise montmorillonit, illit, kaolen anortit ve a-kuvar-s içeren kompleks bir karışım olduğu görülmüştür. Piknometre ile yapılan özgül ağırlık ölçümlerinde kilin 23SO kg/m3, iki elktrofiltrenin farklı üç kademesinden alınan ve Eı, Ez, Ea olarak isimlendirilen uçucu küllerinde sırasıyla 1470, i 760, 2010 kg/m olarak bulunmuştur. Uçucu küllerde tane iriliğinin 5-80 um arasında değiştiği ve Eı olarak kodlanan kül örneğinin bu aralıkta daha iri tane dağılımı içerdiği belirlenmiştir. Taramalı elektron mikroskobu incelemesinde tanelerin çoğunlukla aglomere olduğu, ancak bir- kısmınında tamamen eriyerek küresel şekil aldığı ve elek tron mikroprob analizinde de bu küresel tanelerin cam fazı yapan alkali elementi erce zengin olduğu bulunmuştur. Araştırmanın ikinci aşamasında, karakterizasyonu yapılan uçucu kül ve kil örneklerinden değişik oranlarda hazırlanan karışımlardan, yarı -kuru presleme yöntemi ile yaklaşık 40 mm çapında ve 25 mm yüksekliğinde numuneler üretilmiştir. Numuneler 110 °C'de kurutulup, 900 ve 100O °C sıcaklıkta pişirildikten sonra çeşitli testlere tabi tutularak, özellikleri tesbit edilmiştir. Yapılan testler sonucunda deney numunelerinin kuruma küçülmelerinin % O. 08-1.29, pişme küçülmelerinin % 0.23- 1.89, kızdırma kayıplarının % S. 33-7. SO, gözenek miktarlarının % 31.37-58.29, bulk yoğunluklarının 1030-1880 kg/m, su emme miktarlarının % 15.42-58.32 ve basma mukavemetlerinin de 1.7-45.5 MPa arasında değiştiği bulunmuş tur. Ayrıca numunelerde dikkate değer bir donma ve pamuklaşma görülmemiştir. % 50 ve % 25 kül içeren numunelerin mukavemetlerinin Türk Standardı arına uygun olduğu, % 80 kül içeren numunelerin mukavemetlerinin de , 400 kg/m3 özgül ağırlığa sahip bir ytong yapı malzemesinin mukavemetine eşdeğer olduğu saptanmıştır. Sonuçta atık uçucu küllerin, bağlayıcı olarak kil ilavesiyle inşaat sektöründe hafif duvar örgü malzemesi olarak potansiyel kullanım alanı olabileceği belirlenmiştir. -v-

Özet (Çeviri)

BENEFICATION OF SEYl TOMER POWER PLANT WASTE FLY ASH AS A BUILDING MATERIAL SUMMARY Fly ash is obtained as a secondary waste product in power plants using low grade coal unsuitable for domestic and industrial purposes. The coal is ground into a fine powder- and then carried in a suspension of to burners where it is mixed with a stream secondary air generated from the wind-boxes walls. When ground low grade coal is burnt 1700 °C, 30 percent of the ash formed of the furnace where it is removed by material is called furnace bottom ash. percent of the ash Cin fine dust form) chimney by the stream effect of the This form is called fly ash. It is cyclones or precipitators known as arresters gasses are discharged from the chimney. Trie pr 1 mar y air of pre-heated of the furnace bet ween 1 500 - to the bottom This waste remaining SO is carried to the combustion gasses. collected by the before the fly ash is falls water The then stored in the large bunkers placed under the arrestors from where it is periodically removed to the ash storage area of the plant. Because this type of ash is in dry powder form and is produced in large quantities by the plant (approximately : 600 tons/day for a medium sized) makes it a potential source for environmental polution. In generally fly ash has particle size distribution between l-lOO /urn. Some of the particles are spherical in shape as a result of melting. They comprise chemically a mixture of the following oxides: SİO2, Aİ2Û3. Fe20a, CaO, MgO, Na20, TİO2 and oxide of sulpher combined with some of them. The remaining particles are irregularly shaped, usually in the form of aglomaretes of the following minerals or oxides bound with glassy matrix : SİO2 , 3Aİ2Ûa aSiÖ2 , Fe2Öa (hematite). FeaO* (magnetite) and CaCOa (calcite). -vl-The chemical composition of fly ash depends on the fuel used and the combustion conditions. The table 1. given below indicates typical variations in the composition of fly ash. Table 1. Chemical composition of fly ash In the last decade research in science and technology has focused on the protection of the environment. Environmentally harmful waste products have been used in order to attempt to make them less harmful. Within this context research studies have also been carried out on fly ash with success as a civil engineering material. Therefore the main aim in this study has been to investigate the utilisation of the fly ash of the Seyi turner power plant in brickmaking for building purposes. The fly ash samples obtained from the tree bunkers of the two stage precipitators of the plant were designated as Ei, E2, E3. The clay which was used as binder was obtainad from a brickmaking factory (Aydemirler Tuğla A. S.,Ktltahya-Turkiye> near to the plant. Although some work has been done on using fly ash for brickmaking in Turkey, most of these studies have ommitted detailed characterization of fly ash. Therefore, the first step of this study was focused on this point. For this purpose the following analytical techniques and tests were used. -vii- X-ray diffraction, dif ferantial thermal analysis and thermal gravimetry to identify the phases in the samples. - Particle size measurements and specific gravity determinations to identify the physical characteristic of the samples. - Scanning electron microscopy and electron mieroprobe analysis to characterize the physical and chemical nature of the samples at micro level. In the second step of the study cylindirically shape brick samples measuring 40 mm diameter and approximately SS mm in height were prepared by semi -dry pressing using fly ash and clay mixed in different proportions. After drying the samples at 110 °C they were fired at 900, 1000 °C for 1 hour. The following tests were carried to evaluate the properties; drying and firing shrinkage, loss on ignition, bulk density, porosity determination» compressive strength, freezing and efflorescence testing. The results of the study can be summarized as follows; a> The particle size analysis of the fly ash carried out in the Mieromeritics SÖOO D system, revealed a size ditrlbution between S-SO jum in all samples. E* having the coarsest and E3 having the finest. b> Specific gravity measurements done by the picnometre method gave the results 2350 kg/m for the clay, 1470, 1760, 2010 kg/m for the samples E±-a respectively. Figures lower than 2150 kg/m for the fly ash indicate a low iron oxide content in the chemical composition. c> X-ray diffraction study showed that the fly ash samples mainly consisted of glassy phase and the remeanlng crystalline phases comprised of «-quartz, enstatite and calcium sulphate. d> Scanning electron microscopy and electron mieroprobe analysis studies showed that the fly ash consisted mainly of aglomerate particles, some of them being spherically shaped. The aglomeration formed between the above mentioned crystalline phases joined by a glassy matrix. The spherical formation occurred in the particles which had high alkaline content resulting in a low temperature melt. -viii-e> The teats carried out on brick specimens fired at 900, and 1000 G gave the following results. - Increasing the addition of clay causes an approximate linear- increase in drying shrinkage. The percantege of shrinkage was found to be 0.1 in clay-free brick samples and 1.3 in 100 % pure clay bricks. - The firing shrinkage was found to be slightly decreased with lO % clay addition in both 900, 1000 °G fired samples. The figures being O. 1 % and O. 15 % respectively. The further addition of clay results in linear increase in shrinkage to the values 1.23, 1. 70 % found for pure clay samples fired at the above t emper at ur es r es pec t i vel y. - The variations in the porosity and the bulk densities of the samples were found to be dependent on clay addition. Porosity in clay free samples had a percentage of 56.3 and 55.4 fired at 900, 1000 °C, which decreased to approximately 33. O and 31.4 in pure clay samples fired at the above temperatures respectively. As expected the bulk density showed the opposite effect. The figures obtained being 1030-1050 kg/m for clay-free bricks and 1880 kg/m in pure clay bricks again fired at the above respective temperatures. - The water absorbtion tests gave a similar trend obtained in porosity tests. - The freezing test carried out on the specimens showed that no deterioration took place. Similarly no efflorescence effect was observed on the specimens. - The crushing strength of the brick specimens showed an increase both with the addition of clay and increased firing temperature. - The figures being 1.7 and 1.8 MPa in clay free samples fired at 900, 1000 °C respectively, incresing to 38.4 and 45.5 MPa in pure clay samples. The strength of 3.2-3.4 MPa obtained in 20 % clay 1 specimens were found to be compa :s with specific gravity of 400 kg used as a building material in Turkey. added specimens were found to be comparable to the YTONG bricks with specific gravity of 400 kg/m which are widely -ix-The strength figures for 50 % fly ash added (approximately 9-10 MPa> and 25 "A fly ash added (approximately 24-27 MPa> brick specimens fired at 900, 1000 °C, are comparable to the lower and upper strength values laid down by the Turkish Standards for bricks. The results indicated that light weight bricks with potential use in the building industry could be made with fly ash waste having clay as binding material. -x-

Benzer Tezler

  1. Seyitömer termik santral atık uçucu küllerinin sinterleşme karakterizasyonu

    Sintering characterization of Seyitömer power plant waste fly ash

    ŞADUMAN ERGÜT

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    PROF. SEVİNÇ VAHDETTİN

  2. Uçucu küllerden soğuk bağlama yöntemi uygulanarak üretilen agregaların harç özelliklerine etkisi

    The effect of fly ash aggregate produced by cold bonding method on mortar properties

    NAZMİYE KELEŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İnşaat MühendisliğiAkdeniz Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. NİYAZİ UĞUR KOÇKAL

  3. Seyitömer Termik Santrali'nin uçucu küllerinin yer ve duvar karosu sırlarının renklendirilmesinde kullanımı

    Use of Seyitömer Thermal Energy Plant's fly ashes in colouring the floor and wall tile glazes

    GÖNÜL DOĞRU

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    Seramik MühendisliğiAnadolu Üniversitesi

    Seramik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. MÜNEVVER ÇAKI

  4. Geochemical assesment of environmental effects of fly ash from Seyitömer (Kütahya) Thermal Power Plant

    Seyitömer (Kütahya) Termik Elektrik Santralı'ndaki uçucu küllerin çevresel etkilerinin jeokimyasal değerlendirilmesi

    BURCU ÇANCI

    Yüksek Lisans

    İngilizce

    İngilizce

    1998

    Jeoloji MühendisliğiOrta Doğu Teknik Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NİLGÜN GÜLEÇ