Çok değişkenli lineer olmayan modellerde genetik algoritma
Genetic algorithm in multivariate nonlinear models
- Tez No: 245742
- Danışmanlar: DOÇ. DR. AŞIR GENÇ
- Tez Türü: Doktora
- Konular: Matematik, İstatistik, Mathematics, Statistics
- Anahtar Kelimeler: Çok Değişkenli Lineer Olmayan Model, Genetik Algoritma, Parametre Tahmini, Multivariate Non-Linear Model, Genetic Algorithm, Parameter Estimation
- Yıl: 2009
- Dil: Türkçe
- Üniversite: Selçuk Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 94
Özet
Çok değişkenli lineer olmayan modeller birçok uygulamada bağımlı değişken(ler) ile bağımsız değişken(ler) arasındaki ilişkiyi modellemek amacıyla kullanılmaktadır. Lineer olmayan modellerin parametreleri En Küçük Kareler (EKK) yöntemiyle tahmin edilebilmektedir. EKK yönteminde parametre tahmini için en çok Gauss-Newton, Marquardt ve En Hızlı İniş algoritmaları kullanılmaktadır. Bu algoritmaların kullanılabilmesi için bağımsız değişken(ler)in tepki fonksiyonunun en az iki kez türevlenebilmesi şartı gerekmektedir. Ayrıca bu algoritmaların seçilecek başlangıç noktasına göre çözüme ulaşamama riski vardır. Bu çalışmada çok değişkenli lineer olmayan modellerde parametre tahmini için belirtilen algoritmalara alternatif olarak bir genetik algoritma önerilmiştir. Çok değişkenli lineer olmayan modelde önerilen genetik algoritma ve EKK yöntemiyle elde edilen parametre tahmin sonuçları karşılaştırılmıştır.
Özet (Çeviri)
Multivariate non-linear models have been used for modelling functional relationship between dependent and independent variable(s) in most of applications. Parameters of multivariate non-linear models can be estimated by least squares (LS) method. Gauss-Newton, Marquardt and Steepest Descent are most widely used algorithms in LS method. These algorithms requires the condition that the function of independent variables can be differentiable at least two times. Also these algorithms have a risk of unreachable solution which depends according to the chosen starting point. In this study as an alternative to these algorithms, genetic algorithms have recommended for parameter estimation in multivariate non-linear models. And then the parameter estimation results of multivariate nonlinear models that obtained by least squares method and genetic algorithm were compared.
Benzer Tezler
- Optimizing rotary-wing UAV trajectory tracking: A comparative study of optimization methods
Döner kanatlı İHA yörünge takibinin optimize edilmesi: Optimizasyon yöntemlerinin karşılaştırmalı bir çalışması
AHMET SABAH
Yüksek Lisans
İngilizce
2024
Havacılık ve Uzay Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ İSMAİL BAYEZİT
- New proposed methods for synthetic minority over-sampling technique
Sentetik azınlık aşırı örnekleme tekniği için yeni önerilen yöntemler
HAKAN KORUL
Yüksek Lisans
İngilizce
2024
Bilim ve Teknolojiİstanbul Teknik ÜniversitesiVeri Mühendisliği ve İş Analitiği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET ALİ ERGÜN
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK
- Bağlayıcı püskürtme eklemeli imalat parametrelerinin CoCr-Mo (F75) alaşım için çok amaçlı optimizasyonu
Multi objective optimization of binder jetting additive manufacturing process parameters for CoCr-Mo (F75) alloy
AHMET SELİM KOCA
Yüksek Lisans
Türkçe
2021
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. EMRECAN SÖYLEMEZ
DR. ÖĞR. ÜYESİ RECEP ÖNLER
- Performance enhancement of an air-to-air missile autopilot controller via genetic algorithms
Havadan havaya bir füze otopilot denetleyicisinde genetik algoritmalar ile başarım artırımı
FATİH OĞUZ
Yüksek Lisans
İngilizce
1998
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiSistem ve Kontrol Mühendisliği Ana Bilim Dalı
DOÇ. DR. FEZA KERESTECİOĞLU