Geri Dön

Bayesian methods for real-time pitch tracking

Gerçek zamanlı nota takibi için Bayesçi yöntemler

  1. Tez No: 270492
  2. Yazar: UMUT ŞİMŞEKLİ
  3. Danışmanlar: YRD. DOÇ. DR. ALİ TAYLAN CEMGİL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Computer Engineering and Computer Science and Control, Science and Technology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: İngilizce
  9. Üniversite: Boğaziçi Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 72

Özet

Bu tezde, notaların gerçek zamanlı perde takibi için Bayes'çi yöntemler ele alınmıştır. Burada ses perdesini, sesin frekans yapısıyla yakından ilgili, fiziksel bir öznitelik olarak ele alıyoruz.Nota takibi, bir notanın perdesinin çevrimiçi bir şekilde belirlenmesi görevidir. Motivasyonumuz, kalın sesi müzik aleti çalan müzisyenler için faydalı olabilecek, hassas ve düşük gecikmeli bir nota takip sistemi geliştirmekti. Ancak hassaslık ve gecikme çelişen iki nicelik olduğu için aynı anda hassasiyeti enbüyütmek ve gecikmeyi enküçültmek zor bir görevdir.Bu çalışmada, çevrimiçi nota takibi için iki olaslıksal model öneriyoruz: Saklı Markov Modeli (SMM) ve Değişim Noktası Modeli (DNM). Bu alanda yapılan önceki çalışmalarda genel, müzik aletine bağlı olmayan nota takip modellerine odaklanılmıştı. Bunun aksine, bizim modellerimiz müzik aletine göre özelleştirilebilir ve belirli bir enstrumana göre eniyilenebilir.Modellerimizde, her notanın spektral şablon adını verdiğimiz bir spektral yapıya sahip olduğunu varsayıyoruz. Üretici modellerimizi, ses spektrumunun bir zaman diliminin, bu şablonlardan birinin bir gürlük katsayısıyla çarpılarak oluştuğu varsayımıyla kurduk. Bu açıdan, nota takibi problemini bir çeşit şablon eşleme problemi olarak ele alıyoruz. Amacımız, ses verisini gözlemledikçe hangi şablonun etkin olduğu ve gürlük katsayısının ne olduğu çıkarımını yapabilmek.SMM'de, notaların bir önceki notaya bağımlı olduğu bir zamansal yapıya sahip olduğunu varsayıyoruz. Gürlük değişkenini zamandan bağımsız ele alıyoruz. Ancak müzik seslerini göz önünde bulundurursak bu varsayım doğal değil. Diğer bir yandan, bu modellerde çıkarım yapmak için standart ve hızlı yöntemleri kullanabiliyoruz.DNM'de, gürlük değişkenleri için de bir zamansal yapı öneriyoruz. Bu şekilde, DNM ile bir müzik aletinin sönümlenme yapısını açık şekilde modelleyebiliyoruz. Ancak ödünleşim sonucu, bu modelde çıkarım yapmak için çok daha karmaşık çıkarım yöntemleri kullanmamız gerekiyor. Ayrıca, bir noktadan sonra gerçek çıkarım uygulanamaz oluyor. Bu yüzden bu model için yaklaşık bir çıkarım şeması geliştirdik.Bu çalışmanın temel hedefi, nota takip sisteminindeki gecikme ve hassasiyet arasındaki ödünleşimi incelemektir. C++ dilinde geliştirdiğimiz bir uygulamayı kullanarak çeşitli deneyler yaptık. Modellerin başarılarını süzgeçleme ve sabit gecikmeli düzleştirme dağılımlarından elde ettiğimiz en muhtemel yolları kullanarak hesapladık. Değerlendirmeyi tek sesli bas gitar ve tuba kayıtları üzerinde ve dört farklı ölçüt kullanarak yaptık. Ayrıca sonuçlarımızı standard bir perde takip algoritması olan YIN ile karşılaştırdık. İki modelimizden de YIN'den daha başarılı sonuçlar elde ettik. En yüksek hassasiyeti DNM, en yüksek hesaplama hızını ise SMM ile elde ettik.

Özet (Çeviri)

In this thesis, we deal with probabilistic methods to track the pitch of a musical instrument in real-time. Here, we take the pitch as a physical attribute of a musical sound which is closely related to the frequency structure of the sound.Pitch tracking is the task where we try to detect the pitch of a note in an online fashion. Our motivation was to develop an accurate and low-latency monophonic pitch tracking method which would be quite useful for the musicians who play low-pitched instruments. However, since accuracy and latency are conflicting quantities, simultaneously maximizing the accuracy and minimizing the latency is a hard task.In this study, we propose and compare two probabilistic models for online pitch tracking: Hidden Markov Model (HMM) and Change Point Model (CPM). As opposed to the past research which has mainly focused on developing generic, instrument-independent pitch tracking methods, our models are instrument-specific and can be optimized to fit a certain musical instrument.In our models, it is presumed that each note has a certain characteristic spectral shape which we call the spectral template. The generative models are constructed in such a way that each time slice of the audio spectra is generated from one of these spectral templates multiplied by a volume factor. From this point of view, we treat the pitch tracking problem as a template matching problem where the aim is to infer the active template and its volume as we observe the audio data.In the HMM, we assume that the pitch labels have a certain temporal structure in such a way that the current pitch label depends on the previous pitch label. The volume variables are independent in time, which is not the natural case in terms of musical audio. In this model, the inference scheme is standard, straightforward, and fast.In the CPM, we also introduce a temporal structure for the volume variables. In this way, the CPM enables explicit modeling of the damping structure of an instrument. As a trade off, the inference scheme of the CPM is much more complex than the HMM. After some degree, exact inference becomes impractical. For this reason, we developed an approximate inference scheme for this model.The main goal of this work is to investigate the trade off in between latency and accuracy of the pitch tracking system. We conducted several experiments on an implementation which was developed in C++. We evaluated the performance of our models by computing the most-likely paths that were obtained via filtering or fixed-lag smoothing distributions. The evaluation was held on monophonic bass guitar and tuba recordings with respect to four evaluation metrics. We also compared the results with a standard monophonic pitch tracking algorithm (YIN). Both HMM and the CPM performed better than the YIN algorithm. The highest accuracy was obtained from the CPM, whereas the HMM was the fastest in terms of running time.

Benzer Tezler

  1. Essays on nowcasting and forecasting business cycles and real economy

    Konjonktür hareketleri ve reel ekonomi anlık tahmini ve öngörüsü üzerine makaleler

    HAMZA DEMİRCAN

    Doktora

    İngilizce

    İngilizce

    2020

    EkonomiKoç Üniversitesi

    Ekonomi Ana Bilim Dalı

    DOÇ. DR. CEM ÇAKMAKLI

  2. Digital video stabilization with SIFT flow

    SIFT akışı ile sayısal video sabitleme

    İNCİ MELİHA BAYTAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. MELİH PAZARCI

  3. Hibrit elektrikli araçlarda batarya performans ve yakıt tüketimi değerlerinin modellenmesi ve optimizasyonu

    Modeling and optimization of battery performance and fuel consumption in hybrid electric vehicles

    YAVUZ ERAY ALTUN

    Doktora

    Türkçe

    Türkçe

    2024

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DOÇ. DR. OSMAN AKIN KUTLAR

  4. Bayesian inference methods for detection of power systemoscillations

    Güç siıstemi salınımlarını algılamada Bayes çıkarımı yöntemleri

    ALİ ÜNVER SEÇEN

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. UMUT ORGUNER

  5. Application, comparison, and improvement of known received signal strength indication (RSSI) based indoor localization and tracking methods using active rfid devices

    İç ortamda, alınan sinyal gücü (RSSI) tabanlı, bilinen yer bulma ve takip yöntemlerinin, aktif rfıd kullanarak uygulama, karşılaştırma ve geliştirilmesi

    BORA ÖZKAYA

    Yüksek Lisans

    İngilizce

    İngilizce

    2011

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik ve Elektronik Mühendisliği Bölümü

    DR. ARZU KOÇ

    PROF. DR. SENCER KOÇ