Geri Dön

Object segmentation and recognition using gradient based descriptors and shape driven fast marching methods

Gradyan temelli betimleyiciler ve şekil güdümlü hızlı yürüme tekniğiyle nesne bölütleme ve sınıflandırma

  1. Tez No: 293850
  2. Yazar: ABDULKERİM ÇAPAR
  3. Danışmanlar: PROF. DR. MUHİTTİN GÖKMEN
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: İngilizce
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 94

Özet

Bu çalışmada, aktif çevrit nesne bölütleyici yöntemlerle birlikte kullanılabilecek yeni bir şekil betimleme ve tanıma sistemi önerilmiştir. Önerilen sistem daha önce yapılan çalışmalar gibi aktif çevriti önceden tanımlı şekillerden birine zorlamak yerine, çevrit nesne sınırlarına yapışırken aynı zamanda şekil betimleme yapmayı amaçlamıştır.Aktif çevrit bölütleyici olarak Hızlı Yürüme (Fast Marching) algoritması kullanılmış, Hızlı Yürüme metodu için yeni bir hız işlevi tanımlanmıştır. Ayrıca çevriti nesne sınırlarından geçtiği sırada durdurmayı amaçlayan özgün yaklaşımlar önerilmiştir.Çalışmanın en önemli katkılarından birisi yeni ortaya atılan Gradyan Temelli Şekil Betimleyicisi (GTŞB) dir [1]. GTŞB, aktif çevrit bölütleyicilerin yapısına uygun, sınır tabanlı, hem ikili hem de gri-seviyeli görüntülerle rahatça kullanılabilecek başarılı bir şekil betimleyicidir. GTŞB nin araç plaka karakter veritabanı, MPEG-7 şekil veritabanı, Kimia şekil veritabanı gibi farklı şekil veritabanlarında elde ettiği başarılar diğer çok bilinen sınır tabanlı betimleyicilerle de karşılaştırılarak verilmiştir. Elde edilen sonuçlar GTŞB nin tüm veritabanlarında diğer yöntemlere göre daha başarılı olduğunu işaret etmektedir.Çalışmada geliştirilen bir diğer önemli yaklaşım da Hızlı Yürüme çevritinin nesne sınırına yaklaşırken örneklenerek şeklin birden fazla defa betimlenmesine olanak veren yeni sınıflandırıcı yapıdır. Bu yaklaşım nesne tanımayı bir denemede sonuçlandıran geleneksel yöntemlerin bu sınırlamasını aşarak aynı nesneyi birçok kez tanıma olanağı sunmaktadır. Bu tanıma sonuçlarının tümleştirilmesiyle tek tanımaya göre daha yüksek başarılar elde edildiği çalışmanın ilgili bölümlerinde başarıları karşılaştıran tablolar yardımıyla gösterilmektedir.

Özet (Çeviri)

In this thesis, a gradient based shape description and recognition methodology to use with active contour-based object segmentation systems has been proposed.The Fast Marching (FM) active contour evolving model is utilized for boundary segmentation. A new speed functional has been defined to use first and second order image intensity derivatives. A local front stopping algorithm has also been proposed to improve the boundary handling performance of the FM model.The most critical improvement of the thesis is defining a new shape descriptor called the Gradient Based Shape Descriptor (GBSD) [1]. GBSD is a new boundary-based shape descriptor that can operate on both binary and gray-scaled images. The recognition performance of GBSD is measured on a license plate character database, MPEG-7 Core Experiments shape data set and Kimia data Set. The success rates are compared with other well-known boundary-based shape descriptors and it is shown that GBSD achieves better recognition percentages.A new recognition approach that utilizes the progressive active contours while iterating towards the real object boundaries has been proposed. This approach provides the recognizer many trials for shape description; it removes the limitation of traditional recognition systems that have only one chance for shape classification. Test results shown in this study prove that the voted decision result among these iterated contours outperforms the ordinary individual shape recognizers.

Benzer Tezler

  1. Fisher kernel based models for image classification and object localization

    Başlık çevirisi yok

    RAMAZAN GÖKBERK CİNBİŞ

    Doktora

    İngilizce

    İngilizce

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversité de Grenoble

    DR. CORDELIA SCHMID

    DR. JAKOB VERBEEK

  2. Dönerkanat tipinde bir insansız hava aracıyla video tabanlı üst düzey işlevlerin tasarlanması

    Design of video based high level functions for a quadrotor type unmanned aerial vehicle

    NEVREZ İMAMOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik MühendisliğiTOBB Ekonomi ve Teknoloji Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ÖNDER EFE

  3. Bulanık topolojiye dayalı kenar bulma algoritması

    Fuzzy topology based edge detection algorithm

    MURAT HAZER

    Yüksek Lisans

    Türkçe

    Türkçe

    2007

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnadolu Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. HAKAN G. ŞENEL

  4. Design and deployment of deep learning based fuzzy logicsystems

    Derin öğrenme tabanlı bulanık sistemlerin geliştirilmesi ve uygulanması

    AYKUT BEKE

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TUFAN KUMBASAR

  5. Multi-scale recursive context aggregation network for semantic segmentation

    Anlamsal bölümleme için çok ölçekli özyinelemeli bağlam birleştirme ağı

    ABDULLAH YALÇIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET KESKİNÖZ