Geri Dön

Feature selection and discretization for improving classification performance on CAC data set

KAK veri setinde sınıflama başarısını arttırmak için öznitelik seçme ve ayrıklaştırma

  1. Tez No: 333153
  2. Yazar: KAMRAN EMRE SAYIN
  3. Danışmanlar: PROF. DR. HASAN DAĞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Nefroloji, Computer Engineering and Computer Science and Control, Science and Technology, Nephrology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2013
  8. Dil: İngilizce
  9. Üniversite: Kadir Has Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 45

Özet

Veri Madenciliği'nin sağlık alanında kullanımı son 10 yılda verimli tedavi ihtiyacı dolayısıyla artmıştır. Veri Madenciliği günümüzde sağlık alanında güçlü bir yardımcıdır. Sağlık harcamalarının kesilmesinden, hasta teşhisinde karar destek sistemi olarak rol almasına kadar uzanır. Bu tezde kullanılan verisetinin sahibi Dr. Nurhan Seyahi'dir. Dr. Nurhan Seyahi ve meslektaşları 178 tane böbrek nakli geçirmiş hastalarda Koroner Arterlerde Kalsifikasyon üzerine araştırma yapmışlardır. Onlar araştırmalarında geleneksel istatistik metodlarını kullanmışlardır. Bu tez, veri madenciliğinin gücünü kullanarak, öznitelik seçme ve ayrıklaştırma metodlarıyla beraber sınıflandırma algoritmalarının kullanılmasıyla Koroner Arterlerde Kalsifikasyon olup olmadığınının incelenmesinin önemini göstermektedir. Sadece yedi özniteliğe bakarak, ki bunlar; yaş, nakil süresi, diabet, fosfor, rose anjina testi, verici tipi ve hastanın hastalık geçmişi olmak üzere, doktorlar hastada koroner arterlerde kalsifikasyon olup olmadığına yaklaşık 70% doğrulukta karar verebilirler. Veri ayrıklaştırma işleminden sonra bu başarı oranı bazı algoritmalarda 75% civarlarına yükselir. Bu nedenle bu alanda çalışan doktorlar için kuvvetli bir karar destek sistemi olur.

Özet (Çeviri)

Data Mining usage in Health Sector increased much in this decade because of the need for efficient treatment. From cost-cutting in medical expenses to acting as a Decision Support System for patient diagnosis, Data Mining nowadays is a strong companion in Health Sector. The dataset used in this thesis belongs to Dr. Nurhan Seyahi. Dr. Nurhan Seyahi and his colleagues made a research about Coronary Artery Calcification in 178 patients having renal transplantation recently. They used conventional statistical methods in their research. By using the power of data mining, this thesis shows the importance of feature selection and discretization used with classification methods for acting as a decision support system in patient diagnosis for CAC Dataset. Just by looking at seven important attributes, which are; age, time of transplantation, diabetes mellitus, phosphor, rose angina test, donor type and patient history, doctors can decide whether the patient has coronary artery calcification or not with approximately 70% accuracy. After the discretization process this accuracy approximately increases to 75% in some algorithms. Thus becoming a strong decision support system for doctors working in this area.

Benzer Tezler

  1. Sınıflandırma problemlerinde meta-sezgisel optimizasyon yöntemlerinin özellik seçimi ve ayrıklaştırma amacıyla kullanımı

    Utilization of metaheuristic optimization methods for feature selection and discretization on classification problems

    İSMAİL KOÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. İSMAİL BABAOĞLU

  2. A decision tree based intrusion detection system with bootstrap aggregating, discretization, and feature selection

    Yerine geri koyarak örnekleme, ayrıklaştırma ve öznitelik seçme kullanan karar ağacı temelli saldırı tespit sistemi

    SERAY ÖZDEMİR

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik MühendisliğiBoğaziçi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. EMİN ANARIM

  3. An Entropy based discretization of continuous features

    Sürekli niteliklerin entropi tabanlı ayrıklaştırılması

    GÖKHAN ORHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    1998

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET R. TOLUN

  4. Security level classification for confidential documents by using adaptive neuro-fuzzy inference systems

    Gizli dokümanların uyumsal nöron-bulanık çıkarım sistemleri yardımıyla güvenlik derecelerinin sınıflandırılması

    ERDEM ALPARSLAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ADEM KARAHOCA

  5. Mutual information based feature selection for acoustic autism diagnosis

    Akustik otizm teşhisi için ortak bilgiye dayalı öznitelik seçimi

    ŞEFİKA YÜZSEVER

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. SADIK FİKRET GÜRGEN