Geri Dön

Zeki öğrenim sistemlerinde öğrenim kavramlarının otomatik tespiti

Automatically detection of learning concepts in intelligent tutoring system

  1. Tez No: 335530
  2. Yazar: ÖZCAN YILDIRIM
  3. Danışmanlar: YRD. DOÇ. DR. KORHAN GÜNEL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2013
  8. Dil: Türkçe
  9. Üniversite: Adnan Menderes Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Matematik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 47

Özet

Günümüzde bilgisayar teknolojisinin hızla büyümesine paralel olarak, eğitim destek sistemlerine yapay zeka unsurlarının entegre edilmesi konusunda yapılan araştırmalar gittikçe derinleşmiştir. Eğitim teknolojilerinde yapay zeka kullanılması çalışmaları, öğrencinin kendisine sunulan konuyla ilgili neyi öğrenip öğrenmediğinin tespiti, algı kapasitesinin ölçülmesi, öğrenme hızının ve öğrenme stilinin belirlenmesi gibi konunun uzmanı bir kişi tarafından bile zorlukla karar verilen problemleriyle ilgidir. Yapılan bu çalışmaların genel amacı, klasik sınıf içi eğitimi referans alarak eğitim destek sistemlerini daha verimli hale getirmektir. Bu tezde, klasik sınıf içi eğitime destek sağlayan zeki öğretim sistemlerinde bir eğitim içeriğindeki öğrenim kavramlarının nasıl tespit edileceği problemi incelenmiştir. Öğrenim kavramının doğru olarak belirlenmesi zeki öğretim sistemlerinin işlevini yerine getirebilmesi için kritik bir sorundur. Böylece eğitim içeriklerinin sınıflandırılabilmesi, öğrenciye ne öğretilmesi gerektiği ya da önerilen kaynağın gerçekten konu ile ilgili olup olmadığının belirlenmesi sağlanabilir. Tezde, Soyut Cebir, Analiz ve Bilgisayar Bilimleri başlıkları altında toplanan üç farklı konuda eğitim içerikleri kullanılarak derlemler oluşturulmuştur. Derlemler ve dokümanlar ön işlemlerden geçirilip her bir sözcük dizisi için öznitelik vektörleri oluşturulmuştur. Öznitelik vektörlerinin bileşenleri oluşturulurken terim frekansı ve ters doküman frekansı gibi istatistiksel veriler kullanılmıştır. Öznitelik vektörü oluşturan her bir sözcük dizilimi, konuyla ilgili öğretim kavramı olmaya adaydır. Çalışmada aday kavramlar kümesinden öğretim kavramlarını seçme işlemi için, ağırlıklı oylama kullanan k-En Yakın Komşu algoritması ve Levenberg-Marquardt optimizasyonu ile Çok Katmanlı Algılayıcı yöntemleri uygulanmıştır. Yöntem başarısını sorgulamak için ise duyarlılık, kesinlik ve f-ölçüsü değerleri kullanılmıştır.

Özet (Çeviri)

Nowadays, researches regarding the integration of intelligent issues on educational support systems has increased in parallel with the rapid growth of computer technology. The researches are associated with problems such as detecting what to teach to students, learning speed, learning style and perception capacity of students. The overall objective of these studies is to develop more efficient educational support systems promoted by traditional classroom training. The solving these issues are difficult, controversial, time consuming and highly non-trivial processes, even for an expert in this field. This thesis analyzes the problem how to determine the learning concepts from an educational material with the intelligent tutoring systems. The extraction of learning concepts from an educational contents is a critical problem. Thus, the problem about the classification of the educational contents can be overcome. In addition, the question of“what to teach to students”can be answered, and the issues of“whether the recommended educational material is related to the learning concepts actually required to teach or not”can be handled by an educational support system. In this study, firstly, three different corpora have been constructed. The corpora correspond to the“Algebra”,“Calculus”and“Computer Science”as learning domains. The educational contents as documents and corpora has been pre-processed. In the next step, the feature vectors have been generated for each word sequence in the documents. The feature vectors corresponds some statistical data such as term frequency and inverse document frequency. Each word string referenced by a feature vector is candidate for learning concepts within the learning domain. In this study, two different methods have been applied: k-nearest neighbour with majority voting algorithm and Multi-Layer Perceptron (MLP) with Levenberg-Marquardt optimization. Recall, precision and f-measure scores have been used for measuring the system performance.

Benzer Tezler

  1. Zeki öğretim sistemlerinde öğrenci değerlendirme modelleri üzerine

    On student evaluation modelling in intelligent tutoring systems

    KORHAN GÜNEL

    Doktora

    Türkçe

    Türkçe

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. URFAT NURİYEV

  2. Yapay zeka programlama tekniklerinin bilgisayar destekli eğitimde kullanımına ilişkin bir model

    A Model concerning the usage of artificial intelligence program techniques on computer aided education

    TAYFUN TAMER

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Eğitimi Ana Bilim Dalı

    DOÇ. DR. HASAN HÜSEYİN ÖNDER

  3. Kavram haritaları modeli ile zeki öğretim sistemi tasarımı

    Intelligent tutoring system design using concept maps

    EMRAH DİKBIYIK

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Elektronik-Bilgisayar Eğitimi Ana Bilim Dalı

    YRD. DOÇ. DR. BUKET DOĞAN

  4. Problem çözme öğretimine yönelik oyunlaştırılmış uyarlanabilir bir zeki öğretim sisteminin tasarlanması

    Design a gamification adaptive intelligent tutoring system toward problem solving teaching

    EMİNE SELİN AYGÜN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Eğitim ve ÖğretimTrabzon Üniversitesi

    Bilgisayar ve Öğretim Teknolojileri Eğitimi Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ALİ KÜRŞAT ERÜMİT

  5. Öğrenme-öğretme sürecinde yapay zeka ve web tabanlı zeki öğretim sistemi tasarımı ve matematik öğretiminde bir uygulama

    Artificial intelligence and web based intelligent tutoring system design in learning-teaching process and an application in mathematics teaching

    AYTÜRK KELEŞ

    Doktora

    Türkçe

    Türkçe

    2007

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtatürk Üniversitesi

    Ortaöğretim Fen ve Matematik Alanları Eğitimi Ana Bilim Dalı

    PROF.DR. RAHİM OCAK