Bölümleyci kümeleme algoritmalarının farklı veri yoğunluklarında karşılaştırması
Comparison of partitioning-based clustering algorithms on differently distributed data
- Tez No: 355578
- Danışmanlar: YRD. DOÇ. DR. HACER KARACAN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: Türkçe
- Üniversite: Gazi Üniversitesi
- Enstitü: Bilişim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Bilimleri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 107
Özet
Teknolojinin yaygın kullanılmasının neticesinde hacmi her geçen gün artan büyük veri yığınları ortaya çıkmaya başlamıştır. Bu kadar büyük boyutta verinin analizi ve içindeki herhangi bir bilgiye ulaşmak basit inceleme yöntemleriyle oldukça zor olduğundan veri madenciliği devreye girmiştir. Veri madenciliği, çok büyük veri tabanlarından, önceden bilinemeyen, geçerli ve kullanılabilir bilginin çıkarılma işlemi olarak ifade edilmektedir. Başka bir deyişle veri madenciliği, çok büyük veri tabanlarındaki ya da veri ambarlarındaki veriler arasında bulunan ilişkiler, örüntüler, değişiklikler, sapma ve eğilimler, belirli yapılar gibi ilginç bilgilerin ortaya çıkarılması işlemidir. Veri madenciliği alanında son zamanlarda yaygın bir şekilde kullanılan yöntemlerden biri kümeleme yöntemidir. Kümeleme, veri setindeki bilgileri farklı kümelere ayırarak küme içindeki verilerin özelliklerinin benzerlik oranı minimum ve kümeler arasında benzerlik oranını maksimum yapmaktadır. Bu çalışmada bölümleyici kümeleme yöntemleri ele alınarak farklı dağılımlı veri setleri üzerinde bölümleyici kümeleme algoritmalarının karşılaştırması gerçekleştirilmiştir. Bölümleyici kümeleme algoritmaları arasından“k-means”ve“kernel k-means”algoritmaları seçilmiştir. Farklı dağılımlı veri setlerini kümeleyerek iki algoritmanın hızı, kümeleme kalitesi ve bellek kaplaması açısından bilgiler elde edilmiş ve bu bilgiler ışığında iki algoritmanın karşılaştırma sonuçları sunulmuştur.
Özet (Çeviri)
As a result of wide spread technology usage, large volumes of collected data began to emerge. It is impossible to discover and analyze any information in such large data collection, so data mining comes into play. Data mining is a process that discovers unpredictable and usable knowledge from databases. In other words, data mining is the process of finding relation patterns, changes, deviations and trends, as well as interesting information like specific structures from large databases. One of the widely used data mining methods is clustering, which divides the data set into different clusters while trying to make the likelihood ratio as minimum inside the cluster and as maximum among other clusters depending on the options in the database. In this study, partitioning-based clustering methods are compared by applying them on data sets with different distribution patterns. We used k-means and kernel k-means partitioning algorithms for clustering data sets. By applying clustering operations on differently distributed data sets we compared the speed, clustering quality and the size of memory used in clustering for these algorithms. The information that we gathered by this comparison is presented and discussed in the related sections of this thesis.
Benzer Tezler
- Derin öğrenme ve büyük veri analitiği yöntemleriKullanarak Covid-19 yayılımının ileriye dönük tahmini
Forecasting the spread of covid-19 using deep learning and big data analytics methods
CYLAS KIGANDA
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. MUHAMMET ALİ AKCAYOL
- Bulanık C-ortalamalar, olabilirlikli C-ortalamalar ve karma kümeleme algoritmalarının etkinliklerinin karşılaştırılması
Comparison of clustering performances of fuzzy C-means, possibilistic C-means and some fuzzy and possibilistic hybrid algorithms
ALPER TUNA KAVLAK
- Development of decision support algorithms on RFID systems of stores
Mağaza RFID sistemlerde karar destek algoritmalarının geliştirilmesi
BORAN TAYLAN BALCI
Yüksek Lisans
İngilizce
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. RECEP ALP KUT
- Veri madenciliğinde kümeleme algoritmaları ve kümeleme analizi
Clustering algorithms in data mining and clustering analysis
YASEMİN KOLDERE AKIN
- Analysis of the impact of clustering on Apriori data mining algorithm
Kümelemenin Apriori veri madenciliği algoritmasına etkisinin incelenmesi
NERGİS YILMAZ
Yüksek Lisans
İngilizce
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGalatasaray ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÜLFEM IŞIKLAR ALPTEKİN