Makine öğrenmesi algoritmaları ve anomali tespiti
Machine learning algorithms and anomaly detection
- Tez No: 391776
- Danışmanlar: DOÇ. DR. ATABEY KAYGUN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, İstatistik, Computer Engineering and Computer Science and Control, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: Türkçe
- Üniversite: Bahçeşehir Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Bölümü
- Bilim Dalı: Uygulamalı Matematik Ana Bilim Dalı
- Sayfa Sayısı: 77
Özet
Makine öğrenmesi yapay zekanın bir alt çalışma alanıdır ve veriden önemli davranışlar ve kurallar çıkartarak ileriye doğru tahminler yapabilmemizi sağlar. Son 20 yılda değişik çalışma alanlarındaki veri miktarı çok hızlı artmıştır ve bu verinin insan çalışması ile analiz edilmesi zordur. Makine öğrenmesi algoritmalarına dair temelde iki öğrenme şekli vardır : gözeticili öğrenme ve gözeticisiz öğrenme. Gözeticili öğrenmede data önceden bilinen sınıflara ayrılır. Gözeticisiz öğrenme de ise sınıflar önceden bilinmez, öğrenme algoritması veri içindeki ayrık yapıları kendisi keşfeder. Bu tezde çok kullanılan makine öğrenmesi algoritmaları detayları ile açıklanmıştır. Veri kümesi içinde beklenen davranışları doğrulamayan örüntülere anomali denir. Veri kümesi içinde anomali bulunmasının önemli sonuçları olabilir. Tezin son bölümünde önceki kısımda bahsedilen makine öğrenmesi algoritmalarının ve yaklaşımlarının anomali tespit etme problemine nasıl uyarlandığı açıklanmıştır.
Özet (Çeviri)
Machine learning is the subfield of the artifical intelligence which finds the significant behaviours or functions from the data for future predictions. Huge amount of data were collected in the last decades and analysis of such a big data requires intelligent systems. Machine learning enables a computer to learn from example data or past experience. According to their learning style, machine learning algorithms can be categorized into two groups: supervised learning algorithms and unsupervised learning algorithms. Training data of supervised learning algorithms includes both the inputs and labels. Unsupervised learning model is not provided with the correct labels during training. A detailed explanation of leading machine learning algorithms is offered in the first part of this thesis. Anomaly is a pattern in the data that does not conform to expected behaviour. Existence of anomalies in the data is important because they might translate to critical actionable information. Both supervised and unsupervised machine learning techniques are applied to detect anomalies in different domains. Last part of this thesis provides an overview of the relation between anomaly detection problem and machine learning approaches.
Benzer Tezler
- A prescriptive analytics approach towards critical ship machinery operations
Kritik gemi makine işlemlerine yönelik bir preskiriptif analitik yaklaşım
BARIŞ YİĞİN
Doktora
İngilizce
2024
Denizcilikİstanbul Teknik ÜniversitesiDeniz Ulaştırma Mühendisliği Ana Bilim Dalı
PROF. DR. METİN ÇELİK
- Makine öğrenmesi tabanlı kullanıcı davranış analizi ile bilgisayar sistemlerine giriş kayıtlarında anomali tespiti
Anomaly detection in computer system login records with machine learning based user behaviour analysis
ERHAN YILMAZ
- Stratejik yönetim perspektifinden sigortacılık sektöründe makine öğrenmesi algoritmaları ile anomali tespiti
An application of machine learning to anomaly detection in insurance industry using strategic management approach
AYŞE NURBANU ŞAHAN
Yüksek Lisans
Türkçe
2020
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
DOÇ. TOLGA KAYA
- Makine öğrenmesi yöntemleri ile web isteklerinde anomali tespiti
Anomaly detection in web requests using machine learning methods
ÇAĞLAR ABABAY
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHaliç ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ FİGEN ÖZEN
- Detecting the anomalies on number of website sessions with machine learning algorithms
Makine öğrenmesi yöntemleri ile internet sitesi oturum sayılarında anomali tespiti
FURKAN ALVER
Yüksek Lisans
İngilizce
2024
İstatistikYıldız Teknik Üniversitesiİstatistik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ERHAN ÇENE