Geri Dön

Geliştirilmiş Ebers-Moll modelinin spice programına katılması

Implementation of the modified Ebers-Moll model into spice

  1. Tez No: 39361
  2. Yazar: ENİS İLKER TEKDEMİR
  3. Danışmanlar: DOÇ.DR. HAKAN KUNTMAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1992
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 96

Özet

ÖZET GELİŞTİRİLMİŞ EBERS-MOLL MODELİNİN SPICE PROGRAMINA KATILMASI Bu çalışmada, üzerinde uzunca bir süredir çalışılan Bipolar Jonksiyonlu Transistorlar için“Geliştirilmiş Ebers-Moll”(GEM) modelinin, bilinen en popüler elektronik, devre simülasyon programı olan SPICE“a katılması ele alınmıştır. Çalışmada, özellikle programa yeni bir eleman katılması amacına uygun olarak ve ticari amaçtan çok akademik çalışma için uygun olan Berkeley Üniversitesi ”nde yazılmış SPICE-3C1 uyarlaması kullanılmıştır. Ele alınan konuların başında programın bu uyarlamasının yapısı hakkında genel bilgi verilmesi gelmektedir. Bu bölümde programa yeni bir elemanı katmak üzere yapılması gerekli değişiklikler, kısaca verilmiştir. Çalışma standart SPICE programındaki BJT modelleri ile GEM modelinin karşılaştırmalı bir incelemesi ile sürdürülmüştür. Bu inceleme daha çok bu türden çalışmaların yapılma amaçlarına bir açıklık kazandıracağı düşüncesiyle ele alınmıştır. Daha sonraki bölümler GEM modelinde yeralan eşitliklerin ve bu eşitliklere ilişkin türev ifadelerinin süreklilik ve yakınsama sorunları açısından incelenmesini içermektedir. Sonuç olarak da programa katılan yeni model ile eskisinin, bazı özellikleri açısından karşılaştırılması amacıyla çeşitli devrelerin simülasyonları yapılmış ve sonuçlar yorumlanarak verilmiştir. -iv-

Özet (Çeviri)

SUMMARY IMPLEMENTATION OF THE MODIFIED EBERS-MOLL MODEL INTO SPICE Computer simulation is one of the major steps in the IC design. Especially, in today's technology and the density of integration make this step more important. In electronic circuit simulation one can do many things which are not possible or so hard to realize. For example, one can obtain waveforms and frequency responses of a circuit without loading or with no effect on it, predict the performance of an extremely large circuit without parasitic influences, use especially ideal devices or model the device non-ideality, introduce many kind of artificial parasitics in the way he wants, separate the circuit into some certain blocks where it's not possible to do in a laboratory, do the temperature analysis with no use of expensive instruments, etc. The accuracy of the simulation results strongly depend on the presicion of the model which simulates the real devices. The second parameter influences the quality of the simulation is time. Finally, for a good simulation one must have accurate device models which are not much time consuming with respect to accuracy and complexity of them. SPICE is one of the popular electronic circuit simulation program that is used for a long time. It's possible to simulate the electronic circuits including almost all types of active devices by using SPICE. There are many versions of SPICE developed up to now by the companies and The University of Berkeley and still on. The designers using SPICE who noticed the shortcomings of available models, develope new models or numerical algorithms or work on a new device model needed to implement their own work into SPICE for the ease of an implementation instead of writing a complete -v-simulation program such as SPICE. This is very difficult to do in SPICE2 because of the organization of the program. For example, to add a new model to SPICE2, changes must be made in 25 different subroutines in addition to the writing of the model code itself. SPICE3 was developed for the need explained above to overcome the inefficiency of the previous versions. In SPICE3, various actions to modify the program have been separated from the rest of the code. The program is organized as a collection of packages. Each package has it's own job such as input parsing, device utilities etc. The relation between the packages are realized by the use of standart data structures. Figure-1 shows the main packages and the basic calling structure. This diagram explaines how easy to modify the program. Figure-1 SPICE3 calling structure, -vi-In this thesis, a new BJT model called“Modified Ebers-Moll Model”(MEM) is implemented into SPICE3. The BJT model used in SPICE is the“Modified Gummel-Poon Model”(MGP) and is basically equivalent of the Ebers-Moll-3 Model with the absence of some certain parameters. Although the accuracy of the standart model (MGP) has been shown in many typical applications, in some cases such as analysis of harmonic distortion, it's not accurate enough as MEM is. The main differences between the two model will be given below. The SPICE MGP BJT model represents the characteristics of the BJT at low and high injection levels in a unified manner with the normalized base-charge q,, which defined as, 2 q q 1 !.-.*%. -ii/2 »-T * [ t-r-M (1) and the quantities q and q^ are (2) (3) (4) q2= Is is JEXPCV /n V )-l| + |EXP(V /n V >-ll _ L BE F T J T L BC R T J KF KR (5) -vii-where Vaf and Var are the Early voltages and Ikf and Ikr are the knee-eurrents to represent high injection effects for forward and inverse operating regions, respectively. The reference currents are expressed as I = cc so 3v EXPQ.5 provides flexibility to adjust the slope of Ln(Ic)-VBE curves at high injection region. To obtain high accuracy two additional effects the leakage resistance of CB junction (Rcb) and the avalanche breakdown of the CB junction are included in MEM model. Rcb improves the variation of hoe with Ic at low current levels. This effect is included in the model with a new current component as, V BC w - - CB The representation of avalanche breakdown effect which improves the variation of hoe at high voltages, three extra model parameters are used and the additional current component is expressed as, nf x I = Jc. I (14) ar f n cc \*-*/ 1 - x where V BC x = - (15) BV CBO In the MEM model the voltage dependence of the base current is also improved by the representation of current gains as, p* = *W 1 - 2V ^ - *«>< 1 - 2V -ax-so that the ideal component of the base current for forward and inverse operating regions are I = i so q ft [exp(vbe/vt)-i] (18) I = 2“7 [e^bc/V-1] 'i' H (19) In the implementation of the model there are two numerical error sources coming from the expressions of normalized junction charge derivative and breakdown current. These two expressions are changed to solve the difficulties as, q j M 1-m (vv] j V < : ^.”- T )] 0.N1 -m. -f (f] ' V > 4>/2 (20) f(x) =- n< 1- x + icrit (21) Figure-2 shows the complete MEM model. After the implementation done succesfully, the differences between the two models are shown with simulation results. Table-1 shows the parameters used in the simulations. -x-ICTstlCC-XCE Figure-2 SPICE MEM Model Table-1 Simulation parameters of BJT -xi-In Figure-3 and 4, normalized small signal h-parameters variation with current and voltage are given. It can be observed from the figures that the results of the MEM model are more realistic. 10." a 1.d I 7 8- 4- -T 1 I I I I 1| » 4 S. 7«» 10 I 'I - I I'M I I * 4 » »78»'. 10-3 i i i i 1 1 1 ? « »7»»1 IC(A) 10 Figure-3 H-parameters variation with current, 1.8 -i 1.6 1.4- ffl 1.2 - 1.0 - 0.B 0.6 0.00 IToo 5.00 10.00 VCE(V) Figure-4 H-parameters variation with voltage -xxi-Another example is given for performance comparison and to show the ability of the MEM to model the non-linearity of the BJT. Figure-5 shows the benchmark circuit, the transconductance amplifier, Table-2 shows the simulation times for each analysis and Figure-6 shows the total harmonic distortion variation with DC operating point with measurements. As can be seen from the results, both the model and it's implementation into SPICE program is succesfull. Also the performance is not much effected by comlexity of the MEM model. This will provide the designers a good choice to use two levels of BJT model according to their application area. The parameters given in Table-1 is of the npn transistors. The parameters of pnp transistors were determined as, Iso=0.67fA., ft =96, ISE=0.372pA., MF=0.116V R =14MO. CB mc-i nEL=1.4385, £C=0.8V., VAF=50V. and f- o+vcc Vin Figure-5 Transconductance Amplifier. -Xlll-Table-2 Simulation times for Transconductance Amplifier EH 0.1. 0.01 -8 -6 -4 Vo (V) -2 Figure-6 Total harmonic distortion variation with DC operating point. -xiv-

Benzer Tezler

  1. Geliştirilmiş Ebers-Moll modelinin tranzistorlu gerilim kuvvetlendiricilerinde minimum distorsiyon şartına uygulanması

    Application of modified Ebers-Moll model to distortion minimization in bipolar transistor amplifiers

    SADRİ ÖZCAN

  2. Spice BJT geliştirilmiş Ebers-Moll model parametrelerinin bilgisayar yardımıyla bulunması

    Extraction of spice BJT modified Ebers-Moll model parameters by the use of computer programs

    VELİ KAYNAR

  3. Automated visual inspection of ''3-D surfaces based on superquadric surfaces

    Süperkaresel yüzeylerin endüstriyel nitelik denetiminde kullanımı

    ŞEBNEM ZORLU

    Yüksek Lisans

    İngilizce

    İngilizce

    1995

    Elektrik ve Elektronik MühendisliğiBoğaziçi Üniversitesi

    DOÇ.DR. IŞIL BOZMA

    PROF.DR. BÜLENT SANKUR

  4. Okul öncesi eğitim ortamının kalitesinin çocukların yaratıcılığına etkisi

    The influence of early childhood environment quality on children's creativity

    İPEK KARLIDAĞ

    Doktora

    Türkçe

    Türkçe

    2018

    Eğitim ve ÖğretimHacettepe Üniversitesi

    İlköğretim Ana Bilim Dalı

    PROF. DR. MÜBECCEL SARA GÖNEN

  5. Hastalık biliş anketi'nin geçerlik ve güvenilirliği

    Reliability and validity study of the turkish version of illness cognition questionnaire

    AYŞEGÜL AYKUL

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Fizyoterapi ve RehabilitasyonBaşkent Üniversitesi

    Fizyoterapi ve Rehabilitasyon Ana Bilim Dalı

    DOÇ. DR. AYDAN AYTAR