Geri Dön

Elektromagnetik dalgaların çok parçalı ince dielektrik tabakalardan saçılması

Multiple diffraction of a plane wave by a multi-part thin dielectric slab

  1. Tez No: 39678
  2. Yazar: ALİ ALKUMRU
  3. Danışmanlar: PROF.DR. MİTHAT İDEMEN
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1994
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 78

Özet

ÖZET Bu çalışmada, sonsuz geniş homojen bir uzay içerisinde bulunan iki ve üç parçalı bir dielektrik tabakadan elektromagnetik dalgaların saçılımı ayrıntılı olarak incelenmiştir. Göz önüne alman çok parçalı dielektrik tabaka yaklaşık sınır koşullan yardımıyla modellenmiştir. Bu model, iki parçalı hale ilişkin karma sınır değer problemini bir matrisel Wiener- Hopf denklemine indirgemektedir. Sözü edilen Wiener-Hopf sistemi, çekirdeği Daniele-Khrapkov yöntemi ile faktorize edilerek kesin olarak çözülmüştür. Bulunan bu çözüme dayanılarak alanın yüksek frekanslardaki asimptotik analizi yapılmıştır, iki parçalı probleme ilişkin çözümün integral ifadesi esas alınarak, Spektral İterasyon Tekniği (SIT) ile, üç parçalı problemin asimptotik çözümü elde edilmiştir. Probleme ilişkin değişik parametrelerin saçılan alan üzerindeki etkisini açığa çıkarmak amacıyla bir takım sayısal uygulamalar da yapılmıştır.

Özet (Çeviri)

SUMMARY MULTIPLE DIFFRACTION OF A PLANE WAVE BY A MULTI-PART THIN DIELECTRIC SLAB 1. Introduction The present work deals with the multiple diffraction of a plane elec tromagnetic wave by a multi-part thin dielectric slab. The aim is to reveal the mechanism of the excitation of the second order terms between two edges. After simulating the dielectric slab by a material sheet with appropriate boundary conditions, the problem is reduced to the solution of a“matrix Wiener-Hopf equation”which can be treated by using the Daniele-Khrapkov method. By considering this result in the three-part dielectric plane problem one gets the terms up to the second order. 2. Formulation of The Two-Part Dielectric Plane Problem The basic geometrical configuration considered in the present paper is shown in figure- la. The problem consists in studying the plane wave diffraction by the junction between the thin dielectric slabs. In order to this end one considers an equivalent two-part material plane illuminated by a linearly polarized plane wave u*(x, y) (see figure-lb), namely: uifx y\ - e-ik(x cos o+y sin (j>0) 00 0 (3.c) - uT{x, +0) - r2 -z-uT(x, -0) = 0, x > 0 (3. d) dy dy o, j = 1,2 (4.c) {K j/(k/j.j sin 0) for TMZ case (4.d) )Cj/(ksj sin o) for Ti?2 case. E one writes uT(x,y) = uu(x,y) + u°{x,y), (5) where «u(x, y), signifies the“unperturbed field”which would be observed if the whole plane y = 0 in figure- la was occupied by a homogeneous slab with parameter (£2,^25*2) while u°(x,y) represents the effect of the material discontinuity resulting from the fact that the actual dielectric layer for {y = 0, x < 0} is characterized by (eı,/fı,tı). It follows from the definition of uu(x, y) that u^x^ + Rie-W*T5**-»*T^, y>0 uu(x,y)={ (6) me-ik(x cos (j>0+y sın M V 0 A*, *) = 4 j- B0(a)e^y-iaxda ; y < 0 c (8.a) with 7(a) = V“2 - k2. (8.6) The square-root function in (8.6) is defined in the complex a-plane cut as shown in figure-2 such that 7(0) = - ik. Im(a) k / kcos0o. - V Re ( a) 0 -? V Figure-2 Branch-cuts and the integration fine in the complex a-plane The integration fine £ in (8.a) is the infinitely long straight line shown in figure-2. The coefficients AQ(a) and B0(a) in (8.a) are to be deter mined with the aid of boundary conditions in (3. a, 6, c, d) which can also be written explicitely as follows: u°{x,+0)-(t1u0(x,-0) = ~2- - ?le-ifc*c°s^ ; x < 0 02 + T2 -u°(x,+0) - Ti-- u°(x,- 0) = 2iksmo e oy oy cr2 + r2 2 1 - ifci COS ^0 « °(x,+0)-o-2u0(a;,-0) = 0 ; a: > 0 - u°(a;,+0)-r2~u0(x,-0) = 0 ; a; > 0. (9.a) x = -^+°(>) as x -* 0 (lO.a) Vlllwhere with and with \0=60\0 (10.6) Ao= 1 logf^- ^) (lO.c) So = sign I arg f ° J J- (10-d) (ffı -q-2)(ri -r2),. ao = l/(ffl+r2)(n+.2)- (1°-e) By substituting first (8. a) into (9. a, 6, c, eQ and then inverting the resulting integral equations one gets A0(a) - fflB0(a) = *+ (o) + -. (°”*“ ^ -r (ll.o) 7re (o-2 + t2)(ol - k cos 0O ) -7(a) [A0(a) + riBo(o)] = $&(a) - Efesin o) (11.6) ilo(a) - 02#o(a) = $oi(a) (1Lc) -7(a) [A0{a) + r2B0(a)} = $^(a), (ll.d) where Im(-k) while $^(0;) and $^2(a;) are regular in Im(a) < Jm(&cos^>o)- On the other hand from the edge condition in (10. a), one concludes *± (a) = O (a”*0) (12.a) $ 01 (a) = O (a-*0-1) (12.6) and *+(«) = fl^£İ_î_ + O fa-^“-1) (12.c) 00 in their respective region of regularity. The elimination of Ao{a) and Bo(a) between (11. a, 6, c,d) yields a matrix Wiener- Hopf equation from which we shall derive the expressions of #^(a); namely: G.(«)*t-(a) = *f(a) + j-L (13.a) ixwith Ğo(a) *5”(«) = and cr2 +T2 _$o~2(°0. F - X in o“l +t2 0”! - (72 7(a).7(a)(rı-r2) n + 00 in the upper and lower half-planes, respectively. Although the Wiener- Hopf factorization of an arbitrary matrix still remains at present an open problem, the kernel matrix Go (a) given in (13. b) belongs to class for which the Wiener-Hopf factorization can be accomplished through the Daniele- Khrapkov method. Indeed, if one writes G0(a) = C0W(a) with Cn = and W(a) = er2 + r2 1 0 0 1 + Im{-k) and Im{a) < Im(k), respectively. The application of the standard Wiener-Hopf technique enables one to write the solution of (26. a) as *?(*) *fi(«) ^[V+Ca)]-1 î+(a) + P!(a) (27.o) where V+(a) - (1 - a\) 2\l/4 coshxi(a) 7(a)sinhxi(a) 6isinhxi(«) 7(a) coshxi(oO (27.5) with _ /(03 -qr2)(T3 -r2) V (°3 + T2)(r3 +cr2) 61 '(0-3 -o^Xts +0-2) (o-3 +r2)(r3 -r2) and while a Xı(a) = -i^i arccos - k 1 /1-ai 2717 V 1 + a\ (27. c, d) (27.e) (27./) The term Pi (a) appearing in (27.a) is a yet unknown constant matrix of the form Pı(«)=Pı \ (28) resulting from the application of Liouville's theorem during the Wiener- Hopf procedure. And also, in (26. a) the expression I* (a) is given by I+(a) = e-in/4 [ClV-(-Jb)]_1 (^ ~ ff*)®0l(~k) e«“*f 27r(a + fe) ( /. (30) By proceeding as in the previous section one finds that Pi = £(a + k)I+(a). (31) Aoq{oc) =- (To r2 coshxi(a;) + - sinhxi(a) 0\ #(«) From (25.a, 5) and (27. a) we get eftt*(l - a\ )~^4 (ö2 + T2) 7-r [r26i sinhxi(a) + er2 coshxi(a)] [i«(a) + pi] \ (32.a) and #oq(o0 eiQ'(l - a?)”1/* - cosh xi (a) + - sinh xi (a) °i #(«) (0*2 +7“2) + -rr [61 sinhxi(a) - coshxi(a)] [j£(a) + pi] 1 (32.5) Since Aoq(oc) and Boq(ch) are now completely determined, the doubly diffracted field by the junction Q can easily be determined by evaluating (24) through the saddle-point technique to give uOQ{r,il>)~yj2^e~T1* where Si(tp,o) =ksmij) h-afy1/4 eikr (Si(?Mo) ; ^?(0,tt) () - i- sinAi(7r - V>) ”1 ?Tn(- kcostp) - [r2fei sinAi(7r - r/>) + ecr2 cos Ai(7r - ^>)] [.^i2(- kcostp) +pi] (33.6) and ^(Vs^o) =A;sin'0 cos Aı (ît - ^>) - - sin Aı (ît - ^) Iii(-kcostp) - [61 sinAi(7r - if)) + icos Ai(7r - t/>)] [l^2(- kcostj)) +pi] (33.c) XV

Benzer Tezler

  1. X-band hybrid front-end receiver module design for spaceborne synthetic aperture radar applications

    Sentetik aralıklı radar uzay platformlarına uygun x-bant hibrid ön uç RF modülü tasarımı

    ARİF EKİN UZUN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    PROF. DR. SEDEF KENT PINAR

  2. Partner selection and resource allocation in single-cell, multi-cell and cognitive cooperative multiple access channels

    Tek alıcılı, çok alıcılı ve bilişsel işbirlikçi çoklu erişim kanallarında kaynak tahsisi ve işbirlikçi partner seçimi

    SAYGIN BAKŞİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Elektrik ve Elektronik MühendisliğiIşık Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ONUR KAYA

  3. Analysis of the crustal deformation caused by the 1999 Izmıt Düzce earthquakes using synthetic alperture radar interferomentry

    1999 İzmit ve Düzce depremlerinin neden olduğu kabuk deformasyonunun sentetikaçıklık radar interferometrisi ile incelenmesi

    ZİYADİN ÇAKIR

    Doktora

    İngilizce

    İngilizce

    2003

    Jeoloji Mühendisliğiİstanbul Teknik Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERDAR AKYÜZ

  4. Astronomik radyo emisyon mekanizmaları

    Astronomical radio emission mechanism

    TÜLAY ÖZÇAMDALLI

    Yüksek Lisans

    Türkçe

    Türkçe

    2006

    Astronomi ve Uzay BilimleriErciyes Üniversitesi

    Fizik Ana Bilim Dalı

    DOÇ. DR. İBRAHİM KÜÇÜK

  5. Design of a reverberation chamber from a shielded room

    Ekranlı bir odadan reverberatıon chamber tasarımı

    RIDVAN ABA

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. ALİ YAPAR